Spaces:
Sleeping
Sleeping
File size: 10,396 Bytes
6c88ced 63a5421 8ff1bfe 6c88ced bd4548a 6c88ced 8ff1bfe 6c88ced 8ff1bfe 6c88ced 8ff1bfe 6c88ced 8ff1bfe 6c88ced 8ff1bfe 6c88ced 8ff1bfe 6c88ced 8ff1bfe 6c88ced 8ff1bfe 6c88ced 8ff1bfe 6c88ced |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 |
import streamlit as st
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.linear_model import LinearRegression, Lasso
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import mean_squared_error, r2_score
import joblib
import plotly.express as px
import plotly.figure_factory as ff
# Main function
def main():
st.set_page_config(page_title="Data Automation-Machine Learning")
st.title("Machine Learning")
with st.expander("1: Add Your Data Source"):
uploaded_file = st.file_uploader("Upload your CSV or Excel file- Only numbers", type=["csv", "xlsx", "xls"])
if uploaded_file is None:
try:
data = pd.read_csv('example.csv') # Load example CSV
st.info("Loaded example.csv")
except FileNotFoundError:
st.error("Example CSV file not found. Please upload your own CSV or Excel file.")
except pd.errors.EmptyDataError:
st.error("Example CSV file is empty or invalid.")
else:
try:
if uploaded_file.name.endswith('.csv'):
data = pd.read_csv(uploaded_file)
elif uploaded_file.name.endswith(('.xlsx', '.xls')):
data = pd.read_excel(uploaded_file)
# Check if the file has content
if data.empty:
st.error("Uploaded file is empty. Please upload a valid CSV or Excel file.")
else:
st.success("File uploaded successfully!")
except pd.errors.EmptyDataError:
st.error("The uploaded file is empty or contains no readable data.")
except ValueError:
st.error("Error in file format. Please ensure the file is a valid CSV or Excel.")
except Exception as e:
st.error(f"An error occurred: {e}")
with st.expander("2: DataSet Preview"):
st.write("Data Overview")
st.dataframe(data.head())
st.write("Data Description")
st.write(data.describe())
st.write("Missing Values")
st.write(data.isnull().sum())
st.write("Data Types")
st.write(data.dtypes)
with st.expander("3: Data Cleaning"):
st.write("Data Summary Before Cleaning")
st.write(data.describe())
st.write("Missing Values Before Cleaning:")
st.write(data.isnull().sum())
if st.checkbox("Show Missing Values Heatmap"):
fig, ax = plt.subplots(figsize=(10, 6))
sns.heatmap(data.isnull(), cbar=False, cmap='viridis', ax=ax)
plt.title("Missing Values Heatmap")
st.pyplot(fig)
if st.checkbox("Remove Duplicate Rows"):
initial_shape = data.shape
data = data.drop_duplicates()
st.success(f"Removed {initial_shape[0] - data.shape[0]} duplicate rows.")
missing_strategy = st.selectbox(
"Choose a strategy for handling missing values",
options=["Drop Missing Values", "Fill with Mean", "Fill with Median", "Fill with Mode", "Do Nothing"]
)
if st.button("Apply Missing Value Strategy"):
if missing_strategy == "Drop Missing Values":
data.dropna(inplace=True)
st.success("Dropped rows with missing values.")
elif missing_strategy == "Fill with Mean":
data.fillna(data.mean(), inplace=True)
st.success("Filled missing values with the mean.")
elif missing_strategy == "Fill with Median":
data.fillna(data.median(), inplace=True)
st.success("Filled missing values with the median.")
elif missing_strategy == "Fill with Mode":
for column in data.select_dtypes(include=['object']).columns:
data[column].fillna(data[column].mode()[0], inplace=True)
st.success("Filled missing values with the mode for categorical columns.")
elif missing_strategy == "Do Nothing":
st.info("No changes made to missing values.")
st.write("Data Summary After Cleaning")
st.write(data.describe())
st.write("Missing Values After Cleaning:")
st.write(data.isnull().sum())
with st.expander('4: EDA'):
st.write("Correlation Matrix")
correlation_matrix = data.corr()
fig = ff.create_annotated_heatmap(
z=correlation_matrix.values,
x=list(correlation_matrix.columns),
y=list(correlation_matrix.index),
)
fig.update_layout(
title="Correlation Matrix",
xaxis_title="Features",
yaxis_title="Features",
width=700,
height=500,
)
st.plotly_chart(fig)
if st.checkbox("Show Distribution Plots for Numeric Features"):
for column in data.select_dtypes(include=[int, float]).columns:
fig, ax = plt.subplots(figsize=(8, 4))
sns.histplot(data[column], bins=30, kde=True, ax=ax)
plt.title(f'Distribution of {column}')
st.pyplot(fig)
if st.checkbox("Show Boxplots for Numeric Features"):
for column in data.select_dtypes(include=[int, float]).columns:
fig, ax = plt.subplots(figsize=(8, 4))
sns.boxplot(x=data[column], ax=ax)
plt.title(f'Boxplot of {column}')
st.pyplot(fig)
with st.expander("5: Feature Engineering"):
target_column = st.selectbox("Select the target variable", options=data.columns)
feature_columns = st.multiselect("Select features", options=data.columns.drop(target_column))
with st.expander("6: Modelling"):
if 'model_plot' not in st.session_state:
st.session_state.model_plot = None
if 'model_metrics' not in st.session_state:
st.session_state.model_metrics = None
model_option = st.selectbox("Select Regression Model", options=["Linear Regression", "Random Forest Regression", "Lasso Regression"])
if st.button("Train Model (Without Hyperparameter Tuning)"):
if feature_columns:
X = data[feature_columns]
y = data[target_column]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
if model_option == "Linear Regression":
model = LinearRegression()
elif model_option == "Random Forest Regression":
model = RandomForestRegressor(random_state=42)
elif model_option == "Lasso Regression":
model = Lasso()
model.fit(X_train, y_train)
model_name = st.text_input('Enter model name', 'my_model')
model_file_path = f'{model_name}.pkl'
joblib.dump(model, model_file_path)
st.success("Model saved successfully!")
with open(model_file_path, "rb") as f:
st.download_button(
label="Download Model",
data=f,
file_name=model_file_path,
mime="application/octet-stream"
)
y_pred = model.predict(X_test)
mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)
st.session_state.model_plot = (y_test.reset_index(drop=True), y_pred)
st.session_state.model_metrics = (mse, r2)
st.success(f"Mean Squared Error: {mse:.2f}")
st.success(f"R^2 Score: {r2:.2f}")
if st.session_state.model_plot is not None:
y_test, y_pred = st.session_state.model_plot
fig, ax = plt.subplots(figsize=(10, 6))
ax.plot(y_test, label="True Values", color="blue", linestyle="--")
ax.plot(y_pred, label="Predicted Values", color="orange")
ax.set_title(f'{model_option}: True Values vs Predictions')
ax.set_xlabel('Index')
ax.set_ylabel('Values')
ax.legend()
st.pyplot(fig)
if st.session_state.model_metrics is not None:
mse, r2 = st.session_state.model_metrics
st.success(f"Mean Squared Error: {mse:.2f}")
st.success(f"R^2 Score: {r2:.2f}")
with st.expander("7: HyperParameter"):
if feature_columns:
hyperparam_model_option = st.selectbox("Select Model for Hyperparameter Tuning", options=["Linear Regression", "Random Forest Regression", "Lasso Regression"])
if hyperparam_model_option == "Linear Regression":
param_grid = {'fit_intercept': [True, False]}
elif hyperparam_model_option == "Random Forest Regression":
param_grid = {'n_estimators': [50, 100, 200], 'max_depth': [10, 20, None], 'min_samples_split': [2, 5, 10]}
elif hyperparam_model_option == "Lasso Regression":
param_grid = {'alpha': [0.01, 0.1, 1, 10], 'max_iter': [1000, 5000, 10000]}
if st.button("Train Model with Hyperparameter Tuning"):
X = data[feature_columns]
y = data[target_column]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
if hyperparam_model_option == "Linear Regression":
model = LinearRegression()
grid_search = GridSearchCV(model, param_grid, cv=5)
elif hyperparam_model_option == "Random Forest Regression":
model = RandomForestRegressor(random_state=42)
grid_search = GridSearchCV(model, param_grid, cv=5)
elif hyperparam_model_option == "Lasso Regression":
model = Lasso()
grid_search = GridSearchCV(model, param_grid, cv=5)
grid_search.fit(X_train, y_train)
best_params = grid_search.best_params_
st.success(f"Best Hyperparameters: {best_params}")
# Run the application
if __name__ == '__main__':
main()
|