derek-thomas
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -11,34 +11,23 @@ def convert_params(params):
|
|
11 |
s = round(params / p, 2)
|
12 |
return "%s %s" % (s, size_name[i])
|
13 |
|
14 |
-
#
|
15 |
def calc_params(vocab_size, tied_embeddings, hidden_size, sequence_length, num_layers, moe, num_experts, expert_interval, topk, ffn_expansion_factor, num_mlp_linears, kv_size_ratio):
|
16 |
-
# Calculate embedding and unembedding params. If tied, re-use the same params
|
17 |
if tied_embeddings:
|
18 |
embedding_params = hidden_size * vocab_size
|
19 |
else:
|
20 |
embedding_params = 2 * hidden_size * vocab_size
|
21 |
position_embedding_params = hidden_size * sequence_length
|
22 |
-
# Each QKVO matrix is (hxh)
|
23 |
-
# Unless using GQA/MQA which makes K/V smaller
|
24 |
attention_params = int(2 * (1 + kv_size_ratio) * num_layers * hidden_size * hidden_size)
|
25 |
-
# (4*2)lh from the layernorm weights and biases for each of the QKV and mlp_in layernorms, 1h for the final layernorm.
|
26 |
-
# the extra 4lh is a mystery but we include it here
|
27 |
layernorm_params = 13 * num_layers * hidden_size
|
28 |
-
#ffn_params = 12 * num_layers * hidden_size * hidden_size
|
29 |
|
30 |
if moe:
|
31 |
-
# the number of layers that are MoE. (e.g. interval is 2 for GShard)
|
32 |
num_expert_layers = num_layers / expert_interval
|
33 |
-
# the number of FFN params for each MoE layer
|
34 |
ffn_expert_params = num_mlp_linears * ffn_expansion_factor * num_expert_layers * num_experts * hidden_size * hidden_size
|
35 |
-
# the number of FFN params for every dense layer
|
36 |
ffn_dense_params = num_mlp_linears * ffn_expansion_factor * (num_layers - num_expert_layers) * hidden_size * hidden_size
|
37 |
ffn_params = ffn_expert_params + ffn_dense_params
|
38 |
-
# the number of gating layer params assuming it's implemented as a simple linear layer
|
39 |
gating_params = num_expert_layers * hidden_size * num_experts
|
40 |
else:
|
41 |
-
# num_mlp_layers * (h x [ffn_expansion_factor * h]) FFN matrices
|
42 |
ffn_params = num_mlp_linears * ffn_expansion_factor * num_layers * hidden_size * hidden_size
|
43 |
|
44 |
total_params = embedding_params + attention_params + ffn_params + position_embedding_params + layernorm_params
|
@@ -55,34 +44,63 @@ def calc_params(vocab_size, tied_embeddings, hidden_size, sequence_length, num_l
|
|
55 |
"""
|
56 |
return result
|
57 |
|
58 |
-
#
|
59 |
-
|
60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
topk = gr.Number(label="Top k Routing", value=1)
|
77 |
|
78 |
-
|
|
|
|
|
79 |
|
80 |
-
|
81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
outputs=[result])
|
87 |
|
88 |
demo.launch()
|
|
|
11 |
s = round(params / p, 2)
|
12 |
return "%s %s" % (s, size_name[i])
|
13 |
|
14 |
+
# ---- Transformer Parameter Calculation ---- #
|
15 |
def calc_params(vocab_size, tied_embeddings, hidden_size, sequence_length, num_layers, moe, num_experts, expert_interval, topk, ffn_expansion_factor, num_mlp_linears, kv_size_ratio):
|
|
|
16 |
if tied_embeddings:
|
17 |
embedding_params = hidden_size * vocab_size
|
18 |
else:
|
19 |
embedding_params = 2 * hidden_size * vocab_size
|
20 |
position_embedding_params = hidden_size * sequence_length
|
|
|
|
|
21 |
attention_params = int(2 * (1 + kv_size_ratio) * num_layers * hidden_size * hidden_size)
|
|
|
|
|
22 |
layernorm_params = 13 * num_layers * hidden_size
|
|
|
23 |
|
24 |
if moe:
|
|
|
25 |
num_expert_layers = num_layers / expert_interval
|
|
|
26 |
ffn_expert_params = num_mlp_linears * ffn_expansion_factor * num_expert_layers * num_experts * hidden_size * hidden_size
|
|
|
27 |
ffn_dense_params = num_mlp_linears * ffn_expansion_factor * (num_layers - num_expert_layers) * hidden_size * hidden_size
|
28 |
ffn_params = ffn_expert_params + ffn_dense_params
|
|
|
29 |
gating_params = num_expert_layers * hidden_size * num_experts
|
30 |
else:
|
|
|
31 |
ffn_params = num_mlp_linears * ffn_expansion_factor * num_layers * hidden_size * hidden_size
|
32 |
|
33 |
total_params = embedding_params + attention_params + ffn_params + position_embedding_params + layernorm_params
|
|
|
44 |
"""
|
45 |
return result
|
46 |
|
47 |
+
# ---- Memory Calculation Code (from the second script) ---- #
|
48 |
+
def calc_mem(args):
|
49 |
+
dp_degree = args.num_gpus / (args.tensor_parallel_size * args.pipeline_parallel_size)
|
50 |
+
embed_params = 2 * args.vocab_size * args.hidden_size
|
51 |
+
positional_params = args.hidden_size * args.sequence_length
|
52 |
+
ln_params = 8 * args.hidden_size * args.num_layers + (2 * args.hidden_size)
|
53 |
+
attention_params = int(2 * (1 + args.kv_size_ratio) * args.num_layers * args.hidden_size * args.hidden_size)
|
54 |
+
mlp_params = args.num_mlp_linears * args.num_layers * args.hidden_size * args.ffn_expansion_factor * args.hidden_size
|
55 |
+
total_params = embed_params + positional_params + ln_params + attention_params + mlp_params
|
56 |
+
|
57 |
+
bytes_per_param = args.low_prec_bytes_per_val if args.is_mixed_precision else args.high_prec_bytes_per_val
|
58 |
+
model_mem = total_params * bytes_per_param
|
59 |
+
per_gpu_model_mem = model_mem / (args.tensor_parallel_size * args.pipeline_parallel_size)
|
60 |
+
per_gpu_mem_gib = per_gpu_model_mem / 1024**3 + args.misc_mem_gib
|
61 |
|
62 |
+
return f"Per-GPU Memory Required for Training: {per_gpu_mem_gib:.2f} GiB"
|
63 |
+
|
64 |
+
# Gradio Interface
|
65 |
+
with gr.Blocks() as demo:
|
66 |
+
with gr.Tabs():
|
67 |
+
with gr.TabItem("Parameter Calculation"):
|
68 |
+
vocab_size = gr.Number(label="Vocab Size", value=51200)
|
69 |
+
tied_embeddings = gr.Checkbox(label="Tied Embeddings", value=False)
|
70 |
+
hidden_size = gr.Number(label="Hidden Size", value=6144)
|
71 |
+
sequence_length = gr.Number(label="Sequence Length", value=2048)
|
72 |
+
num_layers = gr.Number(label="Number of Layers", value=44)
|
73 |
+
ffn_expansion_factor = gr.Number(label="FFN Expansion Factor", value=4)
|
74 |
+
num_mlp_linears = gr.Number(label="Number of Linear Layers per MLP Block", value=2)
|
75 |
+
kv_size_ratio = gr.Number(label="KV Size Ratio", value=1.0)
|
76 |
|
77 |
+
with gr.Accordion("MoE Parameters", open=False):
|
78 |
+
moe = gr.Checkbox(label="MoE", value=False)
|
79 |
+
num_experts = gr.Number(label="Number of Experts", value=8)
|
80 |
+
expert_interval = gr.Number(label="Expert Interval", value=1)
|
81 |
+
topk = gr.Number(label="Top k Routing", value=1)
|
|
|
82 |
|
83 |
+
result = gr.Textbox(label="Output", interactive=False)
|
84 |
+
calculate_button = gr.Button("Calculate")
|
85 |
+
calculate_button.click(calc_params, inputs=[vocab_size, tied_embeddings, hidden_size, sequence_length, num_layers, moe, num_experts, expert_interval, topk, ffn_expansion_factor, num_mlp_linears, kv_size_ratio], outputs=result)
|
86 |
|
87 |
+
with gr.TabItem("Memory Calculation"):
|
88 |
+
hf_model_name_or_path = gr.Textbox(label="HuggingFace Model Name or Path", value="")
|
89 |
+
num_gpus = gr.Number(label="Number of GPUs", value=1)
|
90 |
+
tensor_parallel_size = gr.Number(label="Tensor Parallel Size", value=1)
|
91 |
+
pipeline_parallel_size = gr.Number(label="Pipeline Parallel Size", value=1)
|
92 |
+
batch_size_per_gpu = gr.Number(label="Batch Size per GPU", value=8)
|
93 |
+
sequence_length = gr.Number(label="Sequence Length", value=2048)
|
94 |
+
vocab_size = gr.Number(label="Vocab Size", value=51200)
|
95 |
+
hidden_size = gr.Number(label="Hidden Size", value=6144)
|
96 |
+
num_attention_heads = gr.Number(label="Number of Attention Heads", value=64)
|
97 |
+
num_layers = gr.Number(label="Number of Layers", value=44)
|
98 |
+
ffn_expansion_factor = gr.Number(label="FFN Expansion Factor", value=4)
|
99 |
+
is_mixed_precision = gr.Checkbox(label="Mixed Precision", value=True)
|
100 |
+
misc_mem_gib = gr.Number(label="Misc Memory Overhead (GiB)", value=5)
|
101 |
|
102 |
+
memory_result = gr.Textbox(label="Memory Calculation Result", interactive=False)
|
103 |
+
calc_memory_button = gr.Button("Calculate Memory")
|
104 |
+
calc_memory_button.click(calc_mem, inputs=[num_gpus, tensor_parallel_size, pipeline_parallel_size, batch_size_per_gpu, sequence_length, vocab_size, hidden_size, num_attention_heads, num_layers, ffn_expansion_factor, is_mixed_precision, misc_mem_gib], outputs=memory_result)
|
|
|
105 |
|
106 |
demo.launch()
|