derek-thomas commited on
Commit
4483569
·
verified ·
1 Parent(s): ee7c71e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +54 -36
app.py CHANGED
@@ -11,34 +11,23 @@ def convert_params(params):
11
  s = round(params / p, 2)
12
  return "%s %s" % (s, size_name[i])
13
 
14
- # calculates the params of a model given their hparams
15
  def calc_params(vocab_size, tied_embeddings, hidden_size, sequence_length, num_layers, moe, num_experts, expert_interval, topk, ffn_expansion_factor, num_mlp_linears, kv_size_ratio):
16
- # Calculate embedding and unembedding params. If tied, re-use the same params
17
  if tied_embeddings:
18
  embedding_params = hidden_size * vocab_size
19
  else:
20
  embedding_params = 2 * hidden_size * vocab_size
21
  position_embedding_params = hidden_size * sequence_length
22
- # Each QKVO matrix is (hxh)
23
- # Unless using GQA/MQA which makes K/V smaller
24
  attention_params = int(2 * (1 + kv_size_ratio) * num_layers * hidden_size * hidden_size)
25
- # (4*2)lh from the layernorm weights and biases for each of the QKV and mlp_in layernorms, 1h for the final layernorm.
26
- # the extra 4lh is a mystery but we include it here
27
  layernorm_params = 13 * num_layers * hidden_size
28
- #ffn_params = 12 * num_layers * hidden_size * hidden_size
29
 
30
  if moe:
31
- # the number of layers that are MoE. (e.g. interval is 2 for GShard)
32
  num_expert_layers = num_layers / expert_interval
33
- # the number of FFN params for each MoE layer
34
  ffn_expert_params = num_mlp_linears * ffn_expansion_factor * num_expert_layers * num_experts * hidden_size * hidden_size
35
- # the number of FFN params for every dense layer
36
  ffn_dense_params = num_mlp_linears * ffn_expansion_factor * (num_layers - num_expert_layers) * hidden_size * hidden_size
37
  ffn_params = ffn_expert_params + ffn_dense_params
38
- # the number of gating layer params assuming it's implemented as a simple linear layer
39
  gating_params = num_expert_layers * hidden_size * num_experts
40
  else:
41
- # num_mlp_layers * (h x [ffn_expansion_factor * h]) FFN matrices
42
  ffn_params = num_mlp_linears * ffn_expansion_factor * num_layers * hidden_size * hidden_size
43
 
44
  total_params = embedding_params + attention_params + ffn_params + position_embedding_params + layernorm_params
@@ -55,34 +44,63 @@ def calc_params(vocab_size, tied_embeddings, hidden_size, sequence_length, num_l
55
  """
56
  return result
57
 
58
- # Gradio interface
59
- with gr.Blocks() as demo:
60
- gr.Markdown("# Transformer Model Parameter Calculator")
 
 
 
 
 
 
 
 
 
 
 
61
 
62
- vocab_size = gr.Number(label="Vocab Size", value=51200)
63
- tied_embeddings = gr.Checkbox(label="Tied Embeddings", value=False)
64
- hidden_size = gr.Number(label="Hidden Size", value=6144)
65
- sequence_length = gr.Number(label="Sequence Length", value=2048)
66
- num_layers = gr.Number(label="Number of Layers", value=44)
67
- ffn_expansion_factor = gr.Number(label="FFN Expansion Factor", value=4)
68
- num_mlp_linears = gr.Number(label="Number of Linear Layers per MLP Block", value=2)
69
- kv_size_ratio = gr.Number(label="KV Size Ratio", value=1.0)
 
 
 
 
 
 
70
 
71
- # MoE Parameters inside an accordion
72
- with gr.Accordion("MoE Parameters", open=False):
73
- moe = gr.Checkbox(label="MoE", value=False)
74
- num_experts = gr.Number(label="Number of Experts", value=8)
75
- expert_interval = gr.Number(label="Expert Interval", value=1)
76
- topk = gr.Number(label="Top k Routing", value=1)
77
 
78
- result = gr.Textbox(label="Output", interactive=False)
 
 
79
 
80
- def run_calculation(vocab_size, tied_embeddings, hidden_size, sequence_length, num_layers, moe, num_experts, expert_interval, topk, ffn_expansion_factor, num_mlp_linears, kv_size_ratio):
81
- return calc_params(vocab_size, tied_embeddings, hidden_size, sequence_length, num_layers, moe, num_experts, expert_interval, topk, ffn_expansion_factor, num_mlp_linears, kv_size_ratio)
 
 
 
 
 
 
 
 
 
 
 
 
82
 
83
- calculate_button = gr.Button("Calculate")
84
- calculate_button.click(run_calculation,
85
- inputs=[vocab_size, tied_embeddings, hidden_size, sequence_length, num_layers, moe, num_experts, expert_interval, topk, ffn_expansion_factor, num_mlp_linears, kv_size_ratio],
86
- outputs=[result])
87
 
88
  demo.launch()
 
11
  s = round(params / p, 2)
12
  return "%s %s" % (s, size_name[i])
13
 
14
+ # ---- Transformer Parameter Calculation ---- #
15
  def calc_params(vocab_size, tied_embeddings, hidden_size, sequence_length, num_layers, moe, num_experts, expert_interval, topk, ffn_expansion_factor, num_mlp_linears, kv_size_ratio):
 
16
  if tied_embeddings:
17
  embedding_params = hidden_size * vocab_size
18
  else:
19
  embedding_params = 2 * hidden_size * vocab_size
20
  position_embedding_params = hidden_size * sequence_length
 
 
21
  attention_params = int(2 * (1 + kv_size_ratio) * num_layers * hidden_size * hidden_size)
 
 
22
  layernorm_params = 13 * num_layers * hidden_size
 
23
 
24
  if moe:
 
25
  num_expert_layers = num_layers / expert_interval
 
26
  ffn_expert_params = num_mlp_linears * ffn_expansion_factor * num_expert_layers * num_experts * hidden_size * hidden_size
 
27
  ffn_dense_params = num_mlp_linears * ffn_expansion_factor * (num_layers - num_expert_layers) * hidden_size * hidden_size
28
  ffn_params = ffn_expert_params + ffn_dense_params
 
29
  gating_params = num_expert_layers * hidden_size * num_experts
30
  else:
 
31
  ffn_params = num_mlp_linears * ffn_expansion_factor * num_layers * hidden_size * hidden_size
32
 
33
  total_params = embedding_params + attention_params + ffn_params + position_embedding_params + layernorm_params
 
44
  """
45
  return result
46
 
47
+ # ---- Memory Calculation Code (from the second script) ---- #
48
+ def calc_mem(args):
49
+ dp_degree = args.num_gpus / (args.tensor_parallel_size * args.pipeline_parallel_size)
50
+ embed_params = 2 * args.vocab_size * args.hidden_size
51
+ positional_params = args.hidden_size * args.sequence_length
52
+ ln_params = 8 * args.hidden_size * args.num_layers + (2 * args.hidden_size)
53
+ attention_params = int(2 * (1 + args.kv_size_ratio) * args.num_layers * args.hidden_size * args.hidden_size)
54
+ mlp_params = args.num_mlp_linears * args.num_layers * args.hidden_size * args.ffn_expansion_factor * args.hidden_size
55
+ total_params = embed_params + positional_params + ln_params + attention_params + mlp_params
56
+
57
+ bytes_per_param = args.low_prec_bytes_per_val if args.is_mixed_precision else args.high_prec_bytes_per_val
58
+ model_mem = total_params * bytes_per_param
59
+ per_gpu_model_mem = model_mem / (args.tensor_parallel_size * args.pipeline_parallel_size)
60
+ per_gpu_mem_gib = per_gpu_model_mem / 1024**3 + args.misc_mem_gib
61
 
62
+ return f"Per-GPU Memory Required for Training: {per_gpu_mem_gib:.2f} GiB"
63
+
64
+ # Gradio Interface
65
+ with gr.Blocks() as demo:
66
+ with gr.Tabs():
67
+ with gr.TabItem("Parameter Calculation"):
68
+ vocab_size = gr.Number(label="Vocab Size", value=51200)
69
+ tied_embeddings = gr.Checkbox(label="Tied Embeddings", value=False)
70
+ hidden_size = gr.Number(label="Hidden Size", value=6144)
71
+ sequence_length = gr.Number(label="Sequence Length", value=2048)
72
+ num_layers = gr.Number(label="Number of Layers", value=44)
73
+ ffn_expansion_factor = gr.Number(label="FFN Expansion Factor", value=4)
74
+ num_mlp_linears = gr.Number(label="Number of Linear Layers per MLP Block", value=2)
75
+ kv_size_ratio = gr.Number(label="KV Size Ratio", value=1.0)
76
 
77
+ with gr.Accordion("MoE Parameters", open=False):
78
+ moe = gr.Checkbox(label="MoE", value=False)
79
+ num_experts = gr.Number(label="Number of Experts", value=8)
80
+ expert_interval = gr.Number(label="Expert Interval", value=1)
81
+ topk = gr.Number(label="Top k Routing", value=1)
 
82
 
83
+ result = gr.Textbox(label="Output", interactive=False)
84
+ calculate_button = gr.Button("Calculate")
85
+ calculate_button.click(calc_params, inputs=[vocab_size, tied_embeddings, hidden_size, sequence_length, num_layers, moe, num_experts, expert_interval, topk, ffn_expansion_factor, num_mlp_linears, kv_size_ratio], outputs=result)
86
 
87
+ with gr.TabItem("Memory Calculation"):
88
+ hf_model_name_or_path = gr.Textbox(label="HuggingFace Model Name or Path", value="")
89
+ num_gpus = gr.Number(label="Number of GPUs", value=1)
90
+ tensor_parallel_size = gr.Number(label="Tensor Parallel Size", value=1)
91
+ pipeline_parallel_size = gr.Number(label="Pipeline Parallel Size", value=1)
92
+ batch_size_per_gpu = gr.Number(label="Batch Size per GPU", value=8)
93
+ sequence_length = gr.Number(label="Sequence Length", value=2048)
94
+ vocab_size = gr.Number(label="Vocab Size", value=51200)
95
+ hidden_size = gr.Number(label="Hidden Size", value=6144)
96
+ num_attention_heads = gr.Number(label="Number of Attention Heads", value=64)
97
+ num_layers = gr.Number(label="Number of Layers", value=44)
98
+ ffn_expansion_factor = gr.Number(label="FFN Expansion Factor", value=4)
99
+ is_mixed_precision = gr.Checkbox(label="Mixed Precision", value=True)
100
+ misc_mem_gib = gr.Number(label="Misc Memory Overhead (GiB)", value=5)
101
 
102
+ memory_result = gr.Textbox(label="Memory Calculation Result", interactive=False)
103
+ calc_memory_button = gr.Button("Calculate Memory")
104
+ calc_memory_button.click(calc_mem, inputs=[num_gpus, tensor_parallel_size, pipeline_parallel_size, batch_size_per_gpu, sequence_length, vocab_size, hidden_size, num_attention_heads, num_layers, ffn_expansion_factor, is_mixed_precision, misc_mem_gib], outputs=memory_result)
 
105
 
106
  demo.launch()