import os import time import shutil from pathlib import Path from typing import Union import atexit import spaces from concurrent.futures import ThreadPoolExecutor import trimesh import gradio as gr from gradio_imageslider import ImageSlider import cv2 import numpy as np import imageio from promptda.promptda import PromptDA from promptda.utils.io_wrapper import load_image, load_depth from promptda.utils.depth_utils import visualize_depth, unproject_depth DEVICE = 'cuda' # if torch.cuda.is_available( # ) else 'mps' if torch.backends.mps.is_available() else 'cpu' model = PromptDA.from_pretrained('depth-anything/promptda_vitl').to(DEVICE).eval() # model = PromptDA.from_pretrained('depth-anything/promptda_vitl').eval() thread_pool_executor = ThreadPoolExecutor(max_workers=1) def delete_later(path: Union[str, os.PathLike], delay: int = 300): print(f"Deleting file: {path}") def _delete(): try: if os.path.isfile(path): os.remove(path) print(f"Deleted file: {path}") elif os.path.isdir(path): shutil.rmtree(path) print(f"Deleted directory: {path}") except: pass def _wait_and_delete(): time.sleep(delay) _delete(path) thread_pool_executor.submit(_wait_and_delete) atexit.register(_delete) @spaces.GPU def run_with_gpu(image, prompt_depth): image = image.to(DEVICE) prompt_depth = prompt_depth.to(DEVICE) depth = model.predict(image, prompt_depth) depth = depth[0, 0].detach().cpu().numpy() return depth def check_is_stray_scanner_app_capture(input_dir): assert os.path.exists(os.path.join(input_dir, 'rgb.mp4')), 'rgb.mp4 not found' pass # @spaces.GPU def run(input_file, resolution): # unzip zip file input_file = input_file.name root_dir = os.path.dirname(input_file) scene_name = input_file.split('/')[-1].split('.')[0] input_dir = os.path.join(root_dir, scene_name) cmd = f'unzip -o {input_file} -d {root_dir}' os.system(cmd) check_is_stray_scanner_app_capture(input_dir) # extract rgb images os.makedirs(os.path.join(input_dir, 'rgb'), exist_ok=True) cmd = f'ffmpeg -i {input_dir}/rgb.mp4 -start_number 0 -frames:v 10 -q:v 2 {input_dir}/rgb/%06d.jpg' os.system(cmd) # Loading & Inference image_path = os.path.join(input_dir, 'rgb', '000000.jpg') image = load_image(image_path) prompt_depth_path = os.path.join(input_dir, 'depth/000000.png') prompt_depth = load_depth(prompt_depth_path) depth = run_with_gpu(image, prompt_depth) color = (image[0].permute(1,2,0).cpu().numpy() * 255.).astype(np.uint8) # Visualization file vis_depth, depth_min, depth_max = visualize_depth(depth, ret_minmax=True) vis_prompt_depth = visualize_depth(prompt_depth[0, 0].detach().cpu().numpy(), depth_min=depth_min, depth_max=depth_max) vis_prompt_depth = cv2.resize(vis_prompt_depth, (vis_depth.shape[1], vis_depth.shape[0]), interpolation=cv2.INTER_NEAREST) # PLY File ixt_path = os.path.join(input_dir, f'camera_matrix.csv') ixt = np.loadtxt(ixt_path, delimiter=',') orig_max = 1920 now_max = max(color.shape[1], color.shape[0]) scale = orig_max / now_max ixt[:2] = ixt[:2] / scale points, colors = unproject_depth(depth, ixt=ixt, color=color, ret_pcd=False) pcd = trimesh.PointCloud(vertices=points, colors=colors) ply_path = os.path.join(input_dir, f'pointcloud.ply') pcd.export(ply_path) # o3d.io.write_point_cloud(ply_path, pcd) glb_path = os.path.join(input_dir, f'pointcloud.glb') scene_3d = trimesh.Scene() glb_colors = np.asarray(colors).astype(np.float32) glb_colors = np.concatenate([glb_colors, np.ones_like(glb_colors[:, :1])], axis=1) # glb_colors = (np.asarray(pcd.colors) * 255).astype(np.uint8) pcd_data = trimesh.PointCloud( vertices=np.asarray(points) * np.array([[1, -1, -1]]), colors=glb_colors.astype(np.float64), ) scene_3d.add_geometry(pcd_data) scene_3d.export(file_obj=glb_path) # o3d.io.write_point_cloud(glb_path, pcd) # Depth Map Original Value depth_path = os.path.join(input_dir, f'depth.png') output_depth = (depth * 1000).astype(np.uint16) imageio.imwrite(depth_path, output_depth) delete_later(Path(input_dir)) delete_later(Path(input_file)) return color, (vis_depth, vis_prompt_depth), Path(glb_path), Path(ply_path).as_posix(), Path(depth_path).as_posix() DESCRIPTION = """ # Estimate accurate and high-resolution depth maps from your iPhone capture. Project Page: [Prompt Depth Anything](https://promptda.github.io/) ## Requirements: 1. iPhone 12 Pro or later Pro models, iPad 2020 Pro or later Pro models 2. Free iOS App: [Stray Scanner App](https://apps.apple.com/us/app/stray-scanner/id1557051662) ## Testing Steps: 1. Capture a scene with the Stray Scanner App. Use the iPhone [Files App](https://apps.apple.com/us/app/files/id1232058109) to compress it into a zip file and transfer it to your computer. [Example screen recording.](https://haotongl.github.io/promptda/assets/ScreenRecording_12-16-2024.mp4) 2. Upload the zip file and click "Submit" to get the depth map of the first frame. Note: - Currently, this demo only supports inference for the first frame. If you need to obtain all depth frames, please refer to our [GitHub repo](https://github.com/DepthAnything/PromptDA). - The depth map is stored as uint16, with a unit of millimeters. """ def main(): with gr.Blocks(theme=gr.themes.Soft()) as demo: gr.Markdown(DESCRIPTION) with gr.Row(): input_file = gr.File(type="filepath", label="Stray scanner app capture zip file") resolution = gr.Dropdown(choices=['756x1008', '1428x1904'], value='756x1008', label="Inference resolution") submit_btn = gr.Button("Submit") # gr.Examples(examples=[ # ["data/assets/example0_chair.zip", "756x1008"] # ], # inputs=[input_file, resolution], # label="Examples", # ) with gr.Row(): with gr.Column(): output_rgb = gr.Image(type="numpy", label="RGB Image") with gr.Column(): output_depths = ImageSlider(label="Output depth / prompt depth", position=0.5) with gr.Row(): with gr.Column(): output_3d_model = gr.Model3D(label="3D Viewer", display_mode='solid', clear_color=[1.0, 1.0, 1.0, 1.0]) with gr.Column(): output_ply = gr.File(type="filepath", label="Download the unprojected point cloud as .ply file", height=30) output_depth_map = gr.File(type="filepath", label="Download the depth map as .png file", height=30) outputs = [ output_rgb, output_depths, output_3d_model, output_ply, output_depth_map, ] gr.Examples(examples=[ ["data/assets/example0_chair.zip", "756x1008"] ], fn=run, inputs=[input_file, resolution], outputs=outputs, label="Examples", cache_examples=True, ) submit_btn.click(run, inputs=[input_file, resolution], outputs=outputs) demo.launch() # def main(): # gr.Interface( # fn=run, # inputs=[ # gr.File(type="filepath", label="Stray scanner app capture zip file"), # gr.Dropdown(choices=['756x1008', '1428x1904'], value='756x1008', label="Inference resolution") # ], # outputs=[ # gr.Image(type="numpy", label="RGB Image"), # ImageSlider(label="Depth map / prompt depth", position=0.5), # gr.Model3D(label="3D Viewer", display_mode='solid', clear_color=[1.0, 1.0, 1.0, 1.0]), # gr.File(type="filepath", label="Download the unprojected point cloud as .ply file"), # gr.File(type="filepath", label="Download the depth map as .png file"), # ], # title=None, # description=DESCRIPTION, # clear_btn=None, # allow_flagging="never", # theme=gr.themes.Soft(), # examples=[ # ["data/assets/example0_chair.zip"] # ] # ).launch() main()