__all__ = ['block', 'make_clickable_model', 'make_clickable_user', 'get_submissions'] import gradio as gr import pandas as pd from huggingface_hub import HfApi, repocard def is_duplicated(space_id:str)->None: card = repocard.RepoCard.load(space_id, repo_type="space") return getattr(card.data, "duplicated_from", None) is not None def make_clickable_model(model_name, link=None): if link is None: link = "https://huggingface.co./" + "spaces/" + model_name return f'{model_name.split("/")[-1]}' def get_space_ids(): api = HfApi() spaces = api.list_spaces(filter="making-demos") print(spaces) space_ids = [x for x in spaces] return space_ids def make_clickable_user(user_id): link = "https://huggingface.co./" + user_id return f'{user_id}' def get_submissions(): submissions = get_space_ids() leaderboard_models = [] for submission in submissions: # user, model, likes if not is_duplicated(submission.id): user_id = submission.id.split("/")[0] leaderboard_models.append( ( make_clickable_user(user_id), make_clickable_model(submission.id), submission.likes, ) ) df = pd.DataFrame(data=leaderboard_models, columns=["User", "Space", "Likes"]) df.sort_values(by=["Likes"], ascending=False, inplace=True) df.insert(0, "Rank", list(range(1, len(df) + 1))) return df block = gr.Blocks() with block: gr.Markdown( """# Making Demos Leaderboard Welcome to the leaderboard for the ever-running Making Demos Event! 🏆 This is a community event where participants create demos of recently released machine learning models, or combine multiple demos to make cool apps! To attend the event, simply join us in [Discord](https://huggingface.co./join/discord), take the role #collaborate and write under one of the paper posts under #making-demos forum. You can add `making-demos` to tags in your Spaces' README.md's metadata section to add your demo to this leaderboard. At the end of every week, winners of this leaderboard will earn special prizes! 🎁 """ ) with gr.Row(): data = gr.components.Dataframe( type="pandas", datatype=["number", "markdown", "markdown", "number"] ) with gr.Row(): data_run = gr.Button("Refresh") data_run.click( get_submissions, outputs=data ) block.load(get_submissions, outputs=data) block.launch()