zip-embed / app.py
dejanseo's picture
Update app.py
b5b276c verified
import streamlit as st
import pandas as pd
import numpy as np
import tempfile
import os
from dejan.veczip import veczip
import csv
import ast
from huggingface_hub import hf_hub_download, HfApi
from transformers import AutoTokenizer, AutoModel
import torch
# Function definitions (is_numeric, parse_as_array, get_line_pattern, detect_header, looks_like_id_column, detect_columns, load_and_validate_embeddings, save_compressed_embeddings, run_veczip - same as before)
# -----------------
def is_numeric(s):
"""Checks if a given string is numeric."""
try:
float(s)
return True
except:
return False
def parse_as_array(val):
"""Parses a string as an array of numbers."""
if isinstance(val, (int, float)):
return [val]
val_str = str(val).strip()
if val_str.startswith("[") and val_str.endswith("]"):
try:
arr = ast.literal_eval(val_str)
if isinstance(arr, list) and all(is_numeric(str(x)) for x in arr):
return arr
return None
except:
return None
parts = val_str.split(",")
if len(parts) > 1 and all(is_numeric(p.strip()) for p in parts):
return [float(p.strip()) for p in parts]
return None
def get_line_pattern(row):
"""Detects the pattern (text, number, or array) of a row."""
pattern = []
for val in row:
arr = parse_as_array(val)
if arr is not None:
pattern.append('arr')
else:
if is_numeric(val):
pattern.append('num')
else:
pattern.append('text')
return pattern
def detect_header(lines):
"""Detects if a CSV has a header."""
if len(lines) < 2:
return False
first_line_pattern = get_line_pattern(lines[0])
subsequent_patterns = [get_line_pattern(r) for r in lines[1:]]
if len(subsequent_patterns) > 1:
if all(p == subsequent_patterns[0] for p in subsequent_patterns) and first_line_pattern != subsequent_patterns[0]:
return True
else:
if subsequent_patterns and first_line_pattern != subsequent_patterns[0]:
return True
return False
def looks_like_id_column(col_values):
"""Checks if a column looks like an ID column (sequential integers)."""
try:
nums = [int(float(v)) for v in col_values]
return nums == list(range(nums[0], nums[0] + len(nums)))
except:
return False
def detect_columns(file_path):
"""Detects embedding and metadata columns in a CSV file."""
with open(file_path, "r", newline="", encoding="utf-8") as f:
try:
sample = f.read(1024*10) # Read a larger sample for sniffing
dialect = csv.Sniffer().sniff(sample, delimiters=[',','\t',';','|'])
delimiter = dialect.delimiter
except:
delimiter = ','
f.seek(0) # reset file pointer
reader = csv.reader(f, delimiter=delimiter)
first_lines = list(reader)[:10]
if not first_lines:
raise ValueError("No data")
has_header = detect_header(first_lines)
if has_header:
header = first_lines[0]
data = first_lines[1:]
else:
header = []
data = first_lines
if not data:
return has_header, [], [], delimiter
cols = list(zip(*data))
candidate_arrays = []
candidate_numeric = []
id_like_columns = set()
text_like_columns = set()
for ci, col in enumerate(cols):
col = list(col)
parsed_rows = [parse_as_array(val) for val in col]
if all(r is not None for r in parsed_rows):
lengths = {len(r) for r in parsed_rows}
if len(lengths) == 1:
candidate_arrays.append(ci)
continue
else:
text_like_columns.add(ci)
continue
if all(is_numeric(v) for v in col):
if looks_like_id_column(col):
id_like_columns.add(ci)
else:
candidate_numeric.append(ci)
else:
text_like_columns.add(ci)
identified_embedding_columns = set(candidate_arrays)
identified_metadata_columns = set()
if candidate_arrays:
identified_metadata_columns.update(candidate_numeric)
else:
if len(candidate_numeric) > 1:
identified_embedding_columns.update(candidate_numeric)
else:
identified_metadata_columns.update(candidate_numeric)
identified_metadata_columns.update(id_like_columns)
identified_metadata_columns.update(text_like_columns)
if header:
for ci, col_name in enumerate(header):
if col_name.lower() == 'id':
if ci in identified_embedding_columns:
identified_embedding_columns.remove(ci)
identified_metadata_columns.add(ci)
break
emb_cols = [header[i] if header and i < len(header) else i for i in identified_embedding_columns]
meta_cols = [header[i] if header and i < len(header) else i for i in identified_metadata_columns]
return has_header, emb_cols, meta_cols, delimiter
def load_and_validate_embeddings(input_file, target_dims):
"""Loads, validates, and summarizes embedding data from a CSV."""
print(f"Loading data from {input_file}...")
has_header, embedding_columns, metadata_columns, delimiter = detect_columns(input_file)
data = pd.read_csv(input_file, header=0 if has_header else None, delimiter=delimiter)
def is_valid_row(row):
for col in embedding_columns:
if parse_as_array(row[col]) is None:
return False
return True
valid_rows_filter = data.apply(is_valid_row, axis=1)
data = data[valid_rows_filter]
print("\n=== File Summary ===")
print(f"File: {input_file}")
print(f"Rows: {len(data)}")
print(f"Metadata Columns: {metadata_columns}")
print(f"Embedding Columns: {embedding_columns}")
print("====================\n")
return data, embedding_columns, metadata_columns, has_header, list(data.columns)
def save_compressed_embeddings(output_file, metadata, compressed_embeddings, embedding_columns, original_columns, has_header):
"""Saves compressed embeddings to a CSV file."""
print(f"Saving compressed data to {output_file}...")
metadata = metadata.copy()
for i, col in enumerate(embedding_columns):
metadata[col] = [compressed_embeddings[i][j].tolist() for j in range(compressed_embeddings[i].shape[0])]
header_option = True if has_header else False
final_df = metadata.reindex(columns=original_columns) if original_columns else metadata
final_df.to_csv(output_file, index=False, header=header_option)
print(f"Data saved to {output_file}.")
def run_veczip(input_file, target_dims=16):
"""Runs veczip compression on the input data."""
data, embedding_columns, metadata_columns, has_header, original_columns = load_and_validate_embeddings(input_file, target_dims)
all_embeddings = []
for col in embedding_columns:
embeddings = np.array([parse_as_array(x) for x in data[col].values])
all_embeddings.append(embeddings)
combined_embeddings = np.concatenate(all_embeddings, axis=0)
compressor = veczip(target_dims=target_dims)
retained_indices = compressor.compress(combined_embeddings)
compressed_embeddings = []
for embeddings in all_embeddings:
compressed_embeddings.append(embeddings[:, retained_indices])
temp_output = tempfile.NamedTemporaryFile(suffix='.csv', delete=False)
save_compressed_embeddings(temp_output.name, data[metadata_columns], compressed_embeddings, embedding_columns, original_columns, has_header)
return temp_output.name
# -----------------
# Embedding Generation Function
@st.cache_resource
def load_embedding_model(model_name="mixedbread-ai/mxbai-embed-large-v1"):
"""Loads the embedding model and tokenizer."""
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModel.from_pretrained(model_name)
return tokenizer, model
@st.cache_data
def generate_embeddings(_tokenizer, _model, text_list):
"""Generates embeddings for a list of text entries."""
encoded_input = _tokenizer(
text_list, padding=True, truncation=True, return_tensors="pt"
)
with torch.no_grad():
model_output = _model(**encoded_input)
embeddings = model_output.last_hidden_state.mean(dim=1)
return embeddings.cpu().numpy()
# Streamlit App
def main():
st.title("Veczip Embeddings Tool")
st.markdown(
"""
This tool offers two ways to compress your embeddings:
1. **Compress Your Embeddings:** Upload a CSV file containing pre-existing embeddings and reduce their dimensionality using `dejan.veczip`.
2. **Generate & Compress Embeddings:** Provide a list of text entries, and this tool will generate embeddings using `mxbai-embed-large-v1` and then compress them.
"""
)
st.markdown(
"""
**General Usage Guide**
* Both tools work best with larger datasets (hundreds or thousands of entries).
* For CSV files with embeddings, ensure that numeric embedding columns are parsed as arrays (e.g. '[1,2,3]' or '1,2,3') and metadata columns are parsed as text or numbers.
* Output files are compressed to 16 dimensions.
"""
)
tab1, tab2 = st.tabs(["Compress Your Embeddings", "Generate & Compress Embeddings"])
with tab1:
st.header("Compress Your Embeddings")
st.markdown(
"""
Upload a CSV file containing pre-existing embeddings.
This will reduce the dimensionality of the embeddings to 16 dimensions using `dejan.veczip`.
"""
)
uploaded_file = st.file_uploader(
"Upload CSV file with embeddings", type=["csv"],
help="Ensure the CSV file has columns where embedding arrays are represented as text. Examples: '[1,2,3]' or '1,2,3'",
)
if uploaded_file:
try:
with st.spinner("Analyzing and compressing embeddings..."):
temp_file = tempfile.NamedTemporaryFile(delete=False)
temp_file.write(uploaded_file.read())
temp_file.close()
output_file_path = run_veczip(temp_file.name)
with open(output_file_path, 'rb') as f:
st.download_button(
label="Download Compressed CSV",
data=f,
file_name="compressed_embeddings.csv",
mime="text/csv"
)
os.unlink(temp_file.name)
os.unlink(output_file_path)
st.success("Compression complete! Download your compressed file below.")
except Exception as e:
st.error(f"Error processing file: {e}")
with tab2:
st.header("Generate & Compress Embeddings")
st.markdown(
"""
Provide a list of text entries (one per line), and this tool will:
1. Generate embeddings using `mixedbread-ai/mxbai-embed-large-v1`.
2. Compress those embeddings to 16 dimensions using `dejan.veczip`.
"""
)
text_input = st.text_area(
"Enter text entries (one per line)",
help="Enter each text entry on a new line. This tool works best with a large sample size.",
)
generate_button = st.button("Generate and Compress")
if generate_button and text_input:
text_list = text_input.strip().split("\n")
if len(text_list) == 0:
st.warning("Please enter some text for embedding")
else:
try:
with st.spinner("Generating and compressing embeddings..."):
tokenizer, model = load_embedding_model()
embeddings = generate_embeddings(tokenizer, model, text_list)
compressor = veczip(target_dims=16)
retained_indices = compressor.compress(embeddings)
compressed_embeddings = embeddings[:, retained_indices]
df = pd.DataFrame(
{"text": text_list, "embeddings": compressed_embeddings.tolist()}
)
st.dataframe(df)
csv_file = df.to_csv(index=False).encode()
st.download_button(
label="Download Compressed Embeddings (CSV)",
data=csv_file,
file_name="generated_compressed_embeddings.csv",
mime="text/csv",
)
st.success("Generated and compressed! Download your file below.")
except Exception as e:
st.error(f"Error: {e}")
if __name__ == "__main__":
main()