File size: 7,999 Bytes
360d784
 
0490fa6
 
360d784
0490fa6
2ea99b7
0490fa6
6a3fde1
360d784
2ea99b7
 
360d784
2ea99b7
 
360d784
 
 
2ea99b7
 
 
360d784
 
 
2ea99b7
 
 
360d784
0490fa6
360d784
 
 
 
 
 
 
 
 
 
 
6a3fde1
360d784
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a3fde1
360d784
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a3fde1
360d784
 
 
 
 
 
6a3fde1
360d784
 
 
 
 
 
 
 
 
 
 
 
0490fa6
 
 
360d784
6a3fde1
0490fa6
 
 
360d784
 
 
 
 
 
 
 
6a3fde1
360d784
 
 
 
 
6a3fde1
 
 
360d784
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a3fde1
360d784
 
 
 
 
 
0490fa6
 
 
 
 
 
 
 
 
 
 
 
 
2ea99b7
 
 
0490fa6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a3fde1
 
 
0490fa6
 
 
 
 
 
6a3fde1
 
 
 
 
 
 
 
2ea99b7
6a3fde1
 
 
0490fa6
 
 
6a3fde1
0490fa6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
360d784
 
 
 
 
 
 
 
 
 
 
 
 
 
0490fa6
 
360d784
 
0490fa6
360d784
 
 
 
 
 
 
 
0490fa6
 
 
 
 
 
360d784
0490fa6
360d784
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
#!/usr/bin/python3
# -*- coding: utf-8 -*-
from __future__ import annotations

import asyncio
import contextlib
import pathlib
import shutil
import traceback
import uuid
from collections import deque
from datetime import datetime
from enum import Enum
from functools import partial
from typing import Any, Optional

import fire
import uvicorn
from fastapi import FastAPI, Request
from fastapi.responses import StreamingResponse
from fastapi.staticfiles import StaticFiles
from metagpt.actions.action import Action
from metagpt.actions.action_output import ActionOutput
from metagpt.config import CONFIG
from metagpt.logs import set_llm_stream_logfunc
from metagpt.schema import Message
from pydantic import BaseModel, Field

from software_company import RoleRun, SoftwareCompany


class QueryAnswerType(Enum):
    Query = "Q"
    Answer = "A"


class SentenceType(Enum):
    TEXT = "text"
    HIHT = "hint"
    ACTION = "action"
    ERROR = "error"


class MessageStatus(Enum):
    COMPLETE = "complete"


class SentenceValue(BaseModel):
    answer: str


class Sentence(BaseModel):
    type: str
    id: Optional[str] = None
    value: SentenceValue
    is_finished: Optional[bool] = None


class Sentences(BaseModel):
    id: Optional[str] = None
    action: Optional[str] = None
    role: Optional[str] = None
    skill: Optional[str] = None
    description: Optional[str] = None
    timestamp: str = Field(default_factory=lambda: datetime.now().strftime("%Y-%m-%dT%H:%M:%S.%f%z"))
    status: str
    contents: list[dict]


class NewMsg(BaseModel):
    """Chat with MetaGPT"""

    query: str = Field(description="Problem description")
    config: dict[str, Any] = Field(description="Configuration information")


class ErrorInfo(BaseModel):
    error: str = None
    traceback: str = None


class ThinkActStep(BaseModel):
    id: str
    status: str
    title: str
    timestamp: str = Field(default_factory=lambda: datetime.now().strftime("%Y-%m-%dT%H:%M:%S.%f%z"))
    description: str
    content: Sentence = None


class ThinkActPrompt(BaseModel):
    message_id: int = None
    timestamp: str = Field(default_factory=lambda: datetime.now().strftime("%Y-%m-%dT%H:%M:%S.%f%z"))
    step: ThinkActStep = None
    skill: Optional[str] = None
    role: Optional[str] = None

    def update_think(self, tc_id, action: Action):
        self.step = ThinkActStep(
            id=str(tc_id),
            status="running",
            title=action.desc,
            description=action.desc,
        )

    def update_act(self, message: ActionOutput | str, is_finished: bool = True):
        if is_finished:
            self.step.status = "finish"
        self.step.content = Sentence(
            type=SentenceType.TEXT.value,
            id=str(1),
            value=SentenceValue(answer=message.content if is_finished else message),
            is_finished=is_finished,
        )

    @staticmethod
    def guid32():
        return str(uuid.uuid4()).replace("-", "")[0:32]

    @property
    def prompt(self):
        return self.json(exclude_unset=True)


class MessageJsonModel(BaseModel):
    steps: list[Sentences]
    qa_type: str
    created_at: datetime = Field(default_factory=datetime.now)
    query_time: datetime = Field(default_factory=datetime.now)
    answer_time: datetime = Field(default_factory=datetime.now)
    score: Optional[int] = None
    feedback: Optional[str] = None

    def add_think_act(self, think_act_prompt: ThinkActPrompt):
        s = Sentences(
            action=think_act_prompt.step.title,
            skill=think_act_prompt.skill,
            description=think_act_prompt.step.description,
            timestamp=think_act_prompt.timestamp,
            status=think_act_prompt.step.status,
            contents=[think_act_prompt.step.content.dict()],
        )
        self.steps.append(s)

    @property
    def prompt(self):
        return self.json(exclude_unset=True)


async def create_message(req_model: NewMsg, request: Request):
    """
    Session message stream
    """
    try:
        config = {k.upper(): v for k, v in req_model.config.items()}
        set_context(config, uuid.uuid4().hex)

        msg_queue = deque()
        CONFIG.LLM_STREAM_LOG = lambda x: msg_queue.appendleft(x) if x else None

        role = SoftwareCompany()
        role.recv(message=Message(content=req_model.query))
        answer = MessageJsonModel(
            steps=[
                Sentences(
                    contents=[
                        Sentence(
                            type=SentenceType.TEXT.value, value=SentenceValue(answer=req_model.query), is_finished=True
                        )
                    ],
                    status=MessageStatus.COMPLETE.value,
                )
            ],
            qa_type=QueryAnswerType.Answer.value,
        )

        tc_id = 0

        while True:
            tc_id += 1
            if request and await request.is_disconnected():
                return
            think_result: RoleRun = await role.think()
            if not think_result:  # End of conversion
                break

            think_act_prompt = ThinkActPrompt(role=think_result.role.profile)
            think_act_prompt.update_think(tc_id, think_result)
            yield think_act_prompt.prompt + "\n\n"
            task = asyncio.create_task(role.act())

            while not await request.is_disconnected():
                if msg_queue:
                    think_act_prompt.update_act(msg_queue.pop(), False)
                    yield think_act_prompt.prompt + "\n\n"
                    continue

                if task.done():
                    break

                await asyncio.sleep(0.5)
            else:
                task.cancel()
                return

            act_result = await task
            think_act_prompt.update_act(act_result)
            yield think_act_prompt.prompt + "\n\n"
            answer.add_think_act(think_act_prompt)
        yield answer.prompt + "\n\n"  # Notify the front-end that the message is complete.
    except Exception as ex:
        description = str(ex)
        answer = f"```python\n\n{traceback.format_exc()}\n\n```"
        step = ThinkActStep(
            id=tc_id,
            status="failed",
            title=description,
            description=description,
            content=Sentence(type=SentenceType.ERROR.value, id=1, value=SentenceValue(answer=answer), is_finished=True),
        )
        think_act_prompt = ThinkActPrompt(step=step)
        yield think_act_prompt.prompt + "\n\n"
    finally:
        shutil.rmtree(CONFIG.WORKSPACE_PATH)


default_llm_stream_log = partial(print, end="")


def llm_stream_log(msg):
    with contextlib.suppress():
        CONFIG._get("LLM_STREAM_LOG", default_llm_stream_log)(msg)


def set_context(context, uid):
    context["WORKSPACE_PATH"] = pathlib.Path("workspace", uid)
    for old, new in (("DEPLOYMENT_ID", "DEPLOYMENT_NAME"), ("OPENAI_API_BASE", "OPENAI_BASE_URL")):
        if old in context and new not in context:
            context[new] = context[old]
    CONFIG.set_context(context)
    return context


class ChatHandler:
    @staticmethod
    async def create_message(req_model: NewMsg, request: Request):
        """Message stream, using SSE."""
        event = create_message(req_model, request)
        headers = {"Cache-Control": "no-cache", "Connection": "keep-alive"}
        return StreamingResponse(event, headers=headers, media_type="text/event-stream")


app = FastAPI()

app.mount(
    "/storage",
    StaticFiles(directory="./storage/"),
    name="static",
)

app.add_api_route(
    "/api/messages",
    endpoint=ChatHandler.create_message,
    methods=["post"],
    summary="Session message sending (streaming response)",
)


app.mount(
    "/",
    StaticFiles(directory="./src/", html=True),
    name="src",
)


set_llm_stream_logfunc(llm_stream_log)


def main():
    uvicorn.run(app="__main__:app", host="0.0.0.0", port=7860)


if __name__ == "__main__":
    fire.Fire(main)