Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,258 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# some code blocks are taken from https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/tree/main
|
2 |
+
import json
|
3 |
+
import os
|
4 |
+
from datetime import datetime, timezone
|
5 |
+
|
6 |
+
import gradio as gr
|
7 |
+
import pandas as pd
|
8 |
+
from huggingface_hub import HfApi
|
9 |
+
|
10 |
+
from src.css_html import custom_css
|
11 |
+
from src.text_content import ABOUT_TEXT, SUBMISSION_TEXT_3
|
12 |
+
from src.utils import (
|
13 |
+
AutoEvalColumn,
|
14 |
+
fields,
|
15 |
+
is_model_on_hub,
|
16 |
+
make_clickable_names,
|
17 |
+
plot_throughput,
|
18 |
+
styled_error,
|
19 |
+
styled_message,
|
20 |
+
)
|
21 |
+
|
22 |
+
TOKEN = os.environ.get("HF_TOKEN", None)
|
23 |
+
api = HfApi(TOKEN)
|
24 |
+
df = pd.read_csv("data/code_eval_board.csv")
|
25 |
+
|
26 |
+
QUEUE_REPO = "deepcode-ai/evaluation-requests"
|
27 |
+
EVAL_REQUESTS_PATH = "eval-queue"
|
28 |
+
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
|
29 |
+
TYPES = [c.type for c in fields(AutoEvalColumn) if not c.hidden]
|
30 |
+
COLS_LITE = [
|
31 |
+
c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden
|
32 |
+
]
|
33 |
+
TYPES_LITE = [
|
34 |
+
c.type for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden
|
35 |
+
]
|
36 |
+
|
37 |
+
|
38 |
+
def add_new_eval(
|
39 |
+
model: str,
|
40 |
+
revision: str,
|
41 |
+
precision: str,
|
42 |
+
model_type: str,
|
43 |
+
):
|
44 |
+
precision = precision
|
45 |
+
current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
|
46 |
+
|
47 |
+
if model_type is None or model_type == "":
|
48 |
+
return styled_error("Please select a model type.")
|
49 |
+
|
50 |
+
# check the model actually exists before adding the eval
|
51 |
+
if revision == "":
|
52 |
+
revision = "main"
|
53 |
+
|
54 |
+
model_on_hub, error = is_model_on_hub(model, revision)
|
55 |
+
if not model_on_hub:
|
56 |
+
return styled_error(f'Model "{model}" {error}')
|
57 |
+
|
58 |
+
print("adding new eval")
|
59 |
+
|
60 |
+
eval_entry = {
|
61 |
+
"model": model,
|
62 |
+
"revision": revision,
|
63 |
+
"precision": precision,
|
64 |
+
"status": "PENDING",
|
65 |
+
"submitted_time": current_time,
|
66 |
+
"model_type": model_type.split(" ")[1],
|
67 |
+
}
|
68 |
+
|
69 |
+
user_name = ""
|
70 |
+
model_path = model
|
71 |
+
if "/" in model:
|
72 |
+
user_name = model.split("/")[0]
|
73 |
+
model_path = model.split("/")[1]
|
74 |
+
|
75 |
+
OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}"
|
76 |
+
os.makedirs(OUT_DIR, exist_ok=True)
|
77 |
+
out_path = f"{OUT_DIR}/{model_path}_eval_request_{precision}.json"
|
78 |
+
print(f"Saving eval request to {out_path}")
|
79 |
+
|
80 |
+
with open(out_path, "w") as f:
|
81 |
+
f.write(json.dumps(eval_entry))
|
82 |
+
|
83 |
+
api.upload_file(
|
84 |
+
path_or_fileobj=out_path,
|
85 |
+
path_in_repo=out_path.split("eval-queue/")[1],
|
86 |
+
repo_id=QUEUE_REPO,
|
87 |
+
repo_type="dataset",
|
88 |
+
commit_message=f"Add {model} to eval queue",
|
89 |
+
)
|
90 |
+
|
91 |
+
# remove the local file
|
92 |
+
os.remove(out_path)
|
93 |
+
|
94 |
+
return styled_message("Your request has been submitted to the evaluation queue!\n")
|
95 |
+
|
96 |
+
|
97 |
+
def select_columns(df, columns):
|
98 |
+
always_here_cols = [
|
99 |
+
AutoEvalColumn.model_type_symbol.name,
|
100 |
+
AutoEvalColumn.model.name,
|
101 |
+
]
|
102 |
+
# We use COLS to maintain sorting
|
103 |
+
filtered_df = df[
|
104 |
+
always_here_cols + [c for c in COLS if c in df.columns and c in columns]
|
105 |
+
]
|
106 |
+
return filtered_df
|
107 |
+
|
108 |
+
|
109 |
+
def filter_items(df, leaderboard_table, query):
|
110 |
+
if query == "all":
|
111 |
+
return df[leaderboard_table.columns]
|
112 |
+
else:
|
113 |
+
query = query[0]
|
114 |
+
filtered_df = df[df["T"].str.contains(query, na=False)]
|
115 |
+
return filtered_df[leaderboard_table.columns]
|
116 |
+
|
117 |
+
|
118 |
+
def search_table(df, leaderboard_table, query):
|
119 |
+
filtered_df = df[(df["Model"].str.contains(query, case=False))]
|
120 |
+
return filtered_df[leaderboard_table.columns]
|
121 |
+
|
122 |
+
|
123 |
+
df = make_clickable_names(df)
|
124 |
+
|
125 |
+
# <div style='background-color: #F5F1CB; text-align: center; padding: 10px;'>
|
126 |
+
# <p><b>Warning</b>: This leaderboard is not regularily updated with the latest instruction-tuned code models, check the <b>Submit Results</b> section for submitting new evaluation results.
|
127 |
+
# You can also check other code leaderboards like <a href="https://evalplus.github.io/leaderboard.html">EvalPlus</a> & <a href="https://huggingface.co/spaces/mike-ravkine/can-ai-code-results">Can-AI-Code</a> .</p>
|
128 |
+
# </div>
|
129 |
+
demo = gr.Blocks(css=custom_css)
|
130 |
+
with demo:
|
131 |
+
with gr.Row():
|
132 |
+
gr.Markdown(
|
133 |
+
"""<div style="text-align: center;"><h1> β Deep <span style='color: #e6b800;'>Code</span> Models <span style='color: #e6b800;'>Leaderboard</span></h1></div>\
|
134 |
+
<br>\
|
135 |
+
<p>Inspired from the <a href="https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard">π€ Open LLM Leaderboard</a> and <a href="https://huggingface.co/spaces/optimum/llm-perf-leaderboard">π€ Open LLM-Perf Leaderboard ποΈ</a>, we compare performance of base multilingual code generation models on <a href="https://huggingface.co/datasets/openai_humaneval">HumanEval</a> benchmark and <a href="https://huggingface.co/datasets/nuprl/MultiPL-E">MultiPL-E</a>. We also measure throughput and provide\
|
136 |
+
information about the models. We only compare open pre-trained multilingual code models, that people can start from as base models for their trainings.</p>
|
137 |
+
""",
|
138 |
+
elem_classes="markdown-text",
|
139 |
+
)
|
140 |
+
|
141 |
+
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
142 |
+
with gr.Column():
|
143 |
+
with gr.Tabs(elem_classes="A100-tabs") as A100_tabs:
|
144 |
+
with gr.TabItem("π Evaluation table", id=0):
|
145 |
+
with gr.Column():
|
146 |
+
with gr.Accordion("β‘οΈ See All Columns", open=False):
|
147 |
+
shown_columns = gr.CheckboxGroup(
|
148 |
+
choices=[
|
149 |
+
c
|
150 |
+
for c in COLS
|
151 |
+
if c
|
152 |
+
not in [
|
153 |
+
AutoEvalColumn.dummy.name,
|
154 |
+
AutoEvalColumn.model.name,
|
155 |
+
AutoEvalColumn.model_type_symbol.name,
|
156 |
+
]
|
157 |
+
],
|
158 |
+
value=[
|
159 |
+
c
|
160 |
+
for c in COLS_LITE
|
161 |
+
if c
|
162 |
+
not in [
|
163 |
+
AutoEvalColumn.dummy.name,
|
164 |
+
AutoEvalColumn.model.name,
|
165 |
+
AutoEvalColumn.model_type_symbol.name,
|
166 |
+
]
|
167 |
+
],
|
168 |
+
label="",
|
169 |
+
elem_id="column-select",
|
170 |
+
interactive=True,
|
171 |
+
)
|
172 |
+
# with gr.Column(min_width=780):
|
173 |
+
with gr.Row():
|
174 |
+
search_bar = gr.Textbox(
|
175 |
+
placeholder="π Search for your model and press ENTER...",
|
176 |
+
show_label=False,
|
177 |
+
elem_id="search-bar",
|
178 |
+
)
|
179 |
+
filter_columns = gr.Radio(
|
180 |
+
label="β Filter model types",
|
181 |
+
choices=["all", "π’ base", "πΆ instruction-tuned", "EXT external-evaluation"],
|
182 |
+
value="all",
|
183 |
+
elem_id="filter-columns",
|
184 |
+
)
|
185 |
+
|
186 |
+
leaderboard_df = gr.components.Dataframe(
|
187 |
+
value=df[
|
188 |
+
[
|
189 |
+
AutoEvalColumn.model_type_symbol.name,
|
190 |
+
AutoEvalColumn.model.name,
|
191 |
+
]
|
192 |
+
+ shown_columns.value
|
193 |
+
],
|
194 |
+
headers=[
|
195 |
+
AutoEvalColumn.model_type_symbol.name,
|
196 |
+
AutoEvalColumn.model.name,
|
197 |
+
]
|
198 |
+
+ shown_columns.value,
|
199 |
+
datatype=TYPES,
|
200 |
+
elem_id="leaderboard-table",
|
201 |
+
interactive=False,
|
202 |
+
)
|
203 |
+
|
204 |
+
hidden_leaderboard_df = gr.components.Dataframe(
|
205 |
+
value=df,
|
206 |
+
headers=COLS,
|
207 |
+
datatype=["str" for _ in range(len(COLS))],
|
208 |
+
visible=False,
|
209 |
+
)
|
210 |
+
search_bar.submit(
|
211 |
+
search_table,
|
212 |
+
[hidden_leaderboard_df, leaderboard_df, search_bar],
|
213 |
+
leaderboard_df,
|
214 |
+
)
|
215 |
+
filter_columns.change(
|
216 |
+
filter_items,
|
217 |
+
[hidden_leaderboard_df, leaderboard_df, filter_columns],
|
218 |
+
leaderboard_df,
|
219 |
+
)
|
220 |
+
shown_columns.change(
|
221 |
+
select_columns,
|
222 |
+
[hidden_leaderboard_df, shown_columns],
|
223 |
+
leaderboard_df,
|
224 |
+
)
|
225 |
+
gr.Markdown(
|
226 |
+
"""
|
227 |
+
**Notes:**
|
228 |
+
- Win Rate represents how often a model outperforms other models in each language, averaged across all languages.
|
229 |
+
- The scores of instruction-tuned models might be significantly higher on humaneval-python than other languages. We use the instruction format of HumanEval. For other languages, we use base MultiPL-E prompts.
|
230 |
+
- For more details check the π About section.
|
231 |
+
- Models with a π΄ symbol represent external evaluation submission, this means that we didn't verify the results, you can find the author's submission under `Submission PR` field from `See All Columns` tab.
|
232 |
+
""",
|
233 |
+
elem_classes="markdown-text",
|
234 |
+
)
|
235 |
+
|
236 |
+
with gr.TabItem("π Performance Plot", id=1):
|
237 |
+
with gr.Row():
|
238 |
+
bs_1_plot = gr.components.Plot(
|
239 |
+
value=plot_throughput(df, bs=1),
|
240 |
+
elem_id="bs1-plot",
|
241 |
+
show_label=False,
|
242 |
+
)
|
243 |
+
bs_50_plt = gr.components.Plot(
|
244 |
+
value=plot_throughput(df, bs=50),
|
245 |
+
elem_id="bs50-plot",
|
246 |
+
show_label=False,
|
247 |
+
)
|
248 |
+
gr.Markdown(
|
249 |
+
"**Note:** The throughputs for some models are missing and might appear as zero.",
|
250 |
+
elem_classes="markdown-text",
|
251 |
+
)
|
252 |
+
with gr.TabItem("π About", id=2):
|
253 |
+
gr.Markdown(ABOUT_TEXT, elem_classes="markdown-text")
|
254 |
+
with gr.TabItem("Submit results π", id=3):
|
255 |
+
gr.Markdown(SUBMISSION_TEXT_3)
|
256 |
+
|
257 |
+
|
258 |
+
demo.launch()
|