import os import pandas as pd import numpy as np import torch from PIL import Image from transformers import SegformerForSemanticSegmentation, SegformerFeatureExtractor from torch import nn import streamlit as st img_path = None st.title('Semantic Segmentation using SegFormer') file_upload = st.file_uploader('Raw Input Image') image_path = st.selectbox( 'Choose any one image for inference', ('Select image', 'image1.jpg', 'image2.jpg', 'image3.jpg')) if file_upload is None: raw_image = image_path else: raw_image = file_upload if raw_image != 'Select image': df = pd.read_csv('class_dict_seg.csv') classes = df['name'] palette = df[[' r', ' g', ' b']].values id2label = classes.to_dict() label2id = {v: k for k, v in id2label.items()} image = Image.open(raw_image) image = np.asarray(image) with st.spinner('Loading Model...'): feature_extractor = SegformerFeatureExtractor(align=False, reduce_zero_label=False) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = SegformerForSemanticSegmentation.from_pretrained("deep-learning-analytics/segformer_semantic_segmentation", ignore_mismatched_sizes=True, num_labels=len(id2label), id2label=id2label, label2id=label2id, reshape_last_stage=True) model = model.to(device) model.eval() with st.spinner('Preparing image...'): # prepare the image for the model (aligned resize) feature_extractor_inference = SegformerFeatureExtractor(do_random_crop=False, do_pad=False) pixel_values = feature_extractor_inference(image, return_tensors="pt").pixel_values.to(device) with st.spinner('Running inference...'): outputs = model(pixel_values=pixel_values)# logits are of shape (batch_size, num_labels, height/4, width/4) with st.spinner('Postprocessing...'): logits = outputs.logits.cpu() # First, rescale logits to original image size upsampled_logits = nn.functional.interpolate(logits, size=image.shape[:-1], # (height, width) mode='bilinear', align_corners=False) # Second, apply argmax on the class dimension seg = upsampled_logits.argmax(dim=1)[0] color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8) # height, width, 3\ all_labels = [] for label, color in enumerate(palette): color_seg[seg == label, :] = color if label in seg: all_labels.append(id2label[label]) # Convert to BGR color_seg = color_seg[..., ::-1] # Show image + mask img = np.array(image) * 0.5 + color_seg * 0.5 img = img.astype(np.uint8) st.image(img, caption="Segmented Image") st.header("Predicted Labels") for idx, label in enumerate(all_labels): st.subheader(f'{idx+1}) {label}')