Spaces:
Running
Running
File size: 803 Bytes
221edf8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 |
import gradio as gr
from transformers import BlipProcessor, BlipForConditionalGeneration
model_id = "dblasko/blip-dalle3-img2prompt"
model = BlipForConditionalGeneration.from_pretrained(model_id)
processor = BlipProcessor.from_pretrained(model_id)
def gen_caption(image):
inputs = processor(images=image, return_tensors="pt")
pixel_values = inputs.pixel_values
generated_ids = model.generate(pixel_values=pixel_values, max_length=70)
generated_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[
0
]
return generated_caption
# Create a gradio interface with an image input and a textbox output
demo = gr.Interface(
fn=gen_caption,
inputs=gr.Image(shape=(224, 224)),
outputs=gr.Textbox(label="Generated caption"),
)
demo.launch()
|