Spaces:
Runtime error
Runtime error
import logging | |
import sys | |
import gradio as gr | |
from transformers import pipeline, AutoModelForCTC, Wav2Vec2Processor, Wav2Vec2ProcessorWithLM | |
logging.basicConfig( | |
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | |
datefmt="%m/%d/%Y %H:%M:%S", | |
handlers=[logging.StreamHandler(sys.stdout)], | |
) | |
logger = logging.getLogger(__name__) | |
logger.setLevel(logging.DEBUG) | |
DICT_MODELS = { | |
"robust-300m": {"model_id": "dbdmg/wav2vec2-xls-r-300m-italian-robust", "has_lm": True}, | |
"robust-1b": {"model_id": "dbdmg/wav2vec2-xls-r-1b-italian-robust", "has_lm": True}, | |
"300m": {"model_id": "dbdmg/wav2vec2-xls-r-300m-italian", "has_lm": True}, | |
} | |
# LANGUAGES = sorted(LARGE_MODEL_BY_LANGUAGE.keys()) | |
# the container given by HF has 16GB of RAM, so we need to limit the number of models to load | |
MODELS = sorted(DICT_MODELS.keys()) | |
CACHED_MODELS_BY_ID = {} | |
def build_html(history): | |
html_output = "<div class='result'>" | |
for item in history: | |
if item["error_message"] is not None: | |
html_output += f"<div class='result_item result_item_error'>{item['error_message']}</div>" | |
else: | |
url_suffix = " + Guided by Language Model" if item["decoding_type"] == "Guided by Language Model" else "" | |
html_output += "<div class='result_item result_item_success'>" | |
html_output += f'<strong><a target="_blank" href="https://huggingface.co./{item["model_id"]}">{item["model_id"]}{url_suffix}</a></strong><br/><br/>' | |
html_output += f'{item["transcription"]}<br/>' | |
html_output += "</div>" | |
html_output += "</div>" | |
return html_output | |
def run(uploaded_file, input_file, model_name, decoding_type, history): | |
model = DICT_MODELS.get(model_name) | |
history = history or [] | |
if uploaded_file is None and input_file is None: | |
history.append({ | |
"model_id": model["model_id"], | |
"decoding_type": decoding_type, | |
"transcription": "", | |
"error_message": "No input provided." | |
}) | |
else: | |
if input_file is None: | |
input_file = uploaded_file | |
logger.info(f"Running ASR {model_name}-{decoding_type} for {input_file}") | |
history = history or [] | |
if model is None: | |
history.append({ | |
"error_message": f"Model size {model_size} not found for {language} language :(" | |
}) | |
elif decoding_type == "Guided by Language Model" and not model["has_lm"]: | |
history.append({ | |
"error_message": f"LM not available for {language} language :(" | |
}) | |
else: | |
# model_instance = AutoModelForCTC.from_pretrained(model["model_id"]) | |
model_instance = CACHED_MODELS_BY_ID.get(model["model_id"], None) | |
if model_instance is None: | |
model_instance = AutoModelForCTC.from_pretrained(model["model_id"]) | |
CACHED_MODELS_BY_ID[model["model_id"]] = model_instance | |
if decoding_type == "Guided by Language Model": | |
processor = Wav2Vec2ProcessorWithLM.from_pretrained(model["model_id"]) | |
asr = pipeline("automatic-speech-recognition", model=model_instance, tokenizer=processor.tokenizer, | |
feature_extractor=processor.feature_extractor, decoder=processor.decoder) | |
else: | |
processor = Wav2Vec2Processor.from_pretrained(model["model_id"]) | |
asr = pipeline("automatic-speech-recognition", model=model_instance, tokenizer=processor.tokenizer, | |
feature_extractor=processor.feature_extractor, decoder=None) | |
transcription = asr(input_file, chunk_length_s=5, stride_length_s=1)["text"] | |
logger.info(f"Transcription for {input_file}: {transcription}") | |
history.append({ | |
"model_id": model["model_id"], | |
"decoding_type": decoding_type, | |
"transcription": transcription, | |
"error_message": None | |
}) | |
html_output = build_html(history) | |
return html_output, history | |
gr.Interface( | |
run, | |
inputs=[ | |
gr.inputs.Audio(source="upload", type='filepath', optional=True), | |
gr.inputs.Audio(source="microphone", type="filepath", label="Record something...", optional=True), | |
gr.inputs.Radio(label="Model", choices=MODELS), | |
gr.inputs.Radio(label="Decoding type", choices=["Standard", "Guided by Language Model"]), | |
"state" | |
], | |
outputs=[ | |
gr.outputs.HTML(label="Outputs"), | |
"state" | |
], | |
title="Italian Robust ASR", | |
description="", | |
css=""" | |
.result {display:flex;flex-direction:column} | |
.result_item {padding:15px;margin-bottom:8px;border-radius:15px;width:100%} | |
.result_item_success {background-color:mediumaquamarine;color:white;align-self:start} | |
.result_item_error {background-color:#ff7070;color:white;align-self:start} | |
""", | |
allow_screenshot=False, | |
allow_flagging="never", | |
theme="huggingface", | |
examples = [ | |
['demo_example_1.mp3', 'demo_example_1.mp3', 'robust-300m', 'Guided by Language Model'], | |
['demo_luca_1.wav', 'demo_luca_1.wav', 'robust-300m', 'Guided by Language Model'], | |
['demo_luca_2.wav', 'demo_luca_2.wav', 'robust-300m', 'Guided by Language Model'] | |
] | |
).launch(enable_queue=True) |