import gradio as gr import matplotlib.pyplot as plt from sentiment import analyze_sentiment # 📌 定義可選擇的模型(顯示中文名稱) MODEL_OPTIONS = { "多語言推特情緒分析 (XLM-RoBERTa)": "cardiffnlp/twitter-xlm-roberta-base-sentiment", "多語言情緒分析 (BERT)": "nlptown/bert-base-multilingual-uncased-sentiment", "英語情緒分析 (DistilBERT)": "distilbert-base-uncased-finetuned-sst-2-english" } # 📌 生成信心度視覺化圖表 def plot_confidence(score): fig, ax = plt.subplots() categories = ["低", "中等", "高", "極高"] levels = [0.3, 0.5, 0.75, 0.9] confidence_category = next((cat for cat, lvl in zip(categories, levels) if score < lvl), "極高") ax.bar(categories, levels, color=["red", "orange", "yellow", "green"]) ax.set_ylim([0, 1]) ax.set_title(f"信心度分析 ({confidence_category})") return fig # 📌 產生可下載的分析報告 def generate_report(text, result, model_name): report = f"🔍 **分析報告**\n\n📝 **輸入內容**: {text}\n\n📊 **分析結果**:\n{result}\n\n🤖 **使用模型**: {model_name}" return report # 📌 建立 Gradio 介面 def create_ui(): with gr.Blocks(theme=gr.themes.Soft()) as iface: gr.Markdown("# 🎯 多語言情緒分析 AI\n請輸入一段文字,選擇模型,AI 會分析其情緒。") with gr.Row(): text_input = gr.Textbox(lines=3, placeholder="請輸入文本(支援多語言)...", label="輸入文本") with gr.Row(): model_selector = gr.Dropdown(choices=list(MODEL_OPTIONS.keys()), value="多語言推特情緒分析 (XLM-RoBERTa)", label="選擇 AI 模型") analyze_button = gr.Button("分析情緒") with gr.Row(): result_output = gr.Markdown(label="分析結果") plot_output = gr.Plot(label="信心度圖表") report_output = gr.File(label="下載報告") # 📌 綁定按鈕功能 def process_analysis(text, model_name): model_id = MODEL_OPTIONS[model_name] # 轉換中文名稱為模型 ID result = analyze_sentiment(text, model_id) # 調用 API 進行分析 confidence_score = float(result.split("信心度為**: ")[1].split("%")[0]) / 100 plot = plot_confidence(confidence_score) report = generate_report(text, result, model_name) return result, plot, report analyze_button.click(process_analysis, inputs=[text_input, model_selector], outputs=[result_output, plot_output, report_output]) return iface