Spaces:
Running
Running
import gradio as gr | |
import matplotlib.pyplot as plt | |
from sentiment import analyze_sentiment | |
# 📌 定義可選擇的模型(顯示中文名稱) | |
MODEL_OPTIONS = { | |
"多語言推特情緒分析 (XLM-RoBERTa)": "cardiffnlp/twitter-xlm-roberta-base-sentiment", | |
"多語言情緒分析 (BERT)": "nlptown/bert-base-multilingual-uncased-sentiment", | |
"英語情緒分析 (DistilBERT)": "distilbert-base-uncased-finetuned-sst-2-english" | |
} | |
# 📌 生成信心度視覺化圖表 | |
def plot_confidence(score): | |
fig, ax = plt.subplots() | |
categories = ["低", "中等", "高", "極高"] | |
levels = [0.3, 0.5, 0.75, 0.9] | |
confidence_category = next((cat for cat, lvl in zip(categories, levels) if score < lvl), "極高") | |
ax.bar(categories, levels, color=["red", "orange", "yellow", "green"]) | |
ax.set_ylim([0, 1]) | |
ax.set_title(f"信心度分析 ({confidence_category})") | |
return fig | |
# 📌 產生可下載的分析報告 | |
def generate_report(text, result, model_name): | |
report = f"🔍 **分析報告**\n\n📝 **輸入內容**: {text}\n\n📊 **分析結果**:\n{result}\n\n🤖 **使用模型**: {model_name}" | |
return report | |
# 📌 建立 Gradio 介面 | |
def create_ui(): | |
with gr.Blocks(theme=gr.themes.Soft()) as iface: | |
gr.Markdown("# 🎯 多語言情緒分析 AI\n請輸入一段文字,選擇模型,AI 會分析其情緒。") | |
with gr.Row(): | |
text_input = gr.Textbox(lines=3, placeholder="請輸入文本(支援多語言)...", label="輸入文本") | |
with gr.Row(): | |
model_selector = gr.Dropdown(choices=list(MODEL_OPTIONS.keys()), value="多語言推特情緒分析 (XLM-RoBERTa)", label="選擇 AI 模型") | |
analyze_button = gr.Button("分析情緒") | |
with gr.Row(): | |
result_output = gr.Markdown(label="分析結果") | |
plot_output = gr.Plot(label="信心度圖表") | |
report_output = gr.File(label="下載報告") | |
# 📌 綁定按鈕功能 | |
def process_analysis(text, model_name): | |
model_id = MODEL_OPTIONS[model_name] # 轉換中文名稱為模型 ID | |
result = analyze_sentiment(text, model_id) # 調用 API 進行分析 | |
confidence_score = float(result.split("信心度為**: ")[1].split("%")[0]) / 100 | |
plot = plot_confidence(confidence_score) | |
report = generate_report(text, result, model_name) | |
return result, plot, report | |
analyze_button.click(process_analysis, inputs=[text_input, model_selector], outputs=[result_output, plot_output, report_output]) | |
return iface | |