import streamlit as st import seaborn as sns import matplotlib.pyplot as plt import pandas as pd # Load data def load_data(): df = pd.read_csv("processed_data.csv") # Replace with your dataset return df # Create Streamlit app def app(): # Title for the app st.title("Retail Data Insights Dashboard") # Load data df = load_data() # Key Metrics from the data total_orders = df['Transaction ID'].nunique() total_products_sold = df['Quantity'].sum() total_revenue = df['Total Amount'].sum() most_popular_product_cat = df['Product Category'].value_counts().idxmax() most_frequent_age_cat = df['Age Category'].value_counts().idxmax() # Display metrics in the sidebar st.sidebar.header("Key Metrics") st.sidebar.metric("Total Orders", total_orders) st.sidebar.metric("Total Products Sold", total_products_sold) st.sidebar.metric("Total Revenue", f"${total_revenue:,.2f}") st.sidebar.metric("Most Popular Product Category", most_popular_product_cat) st.sidebar.metric("Most Frequent Age Category", most_frequent_age_cat) plots = [ {"title": "Total Products Sold by Product and Age Categories", "x": "Product Category", "hue": "Age Category"}, {"title": "Monthly Revenue Trends by Product Category", "x": "month", "y": "Total Amount", "hue": "Product Category", "estimator": "sum", "marker": "o"}, {"title": "Monthly Revenue Trends by Age Category", "x": "month", "y": "Total Amount", "hue": "Age Category", "estimator": "sum", "marker": "o"}, {"title": "Revenue by Product Category", "x": "Product Category", "y": "Total Amount", "estimator": "sum"}, ] for plot in plots: st.header(plot["title"]) fig, ax = plt.subplots() if "Total Products" in plot["title"]: sns.countplot(data=df, x=plot["x"], hue=plot["hue"], ax=ax) if "Monthly Revenue" in plot["title"]: sns.lineplot(data=df, x=plot["x"], y=plot["y"], hue=plot["hue"], estimator=plot["estimator"], errorbar=None, marker=plot["marker"], ax=ax) if "Revenue by Product" in plot["title"]: sns.barplot(data=df, x=plot["x"], y=plot["y"], estimator=plot["estimator"], errorbar=None, ax=ax) ax.set_xlabel(" ".join(plot["x"].split("_")).capitalize()) if "y" in plot.keys(): ax.set_ylabel(" ".join(plot["y"].split("_")).capitalize()) else: ax.set_ylabel("Quantity") ax.legend(bbox_to_anchor=(1,1)) st.pyplot(fig) plt.show() if __name__ == "__main__": app()