Spaces:
Runtime error
Runtime error
davidmasip
commited on
Commit
•
7b781ca
1
Parent(s):
736f580
Update babyagi.py
Browse files- babyagi.py +3 -273
babyagi.py
CHANGED
@@ -1,278 +1,8 @@
|
|
1 |
-
from collections import deque
|
2 |
-
from typing import Dict, List, Optional
|
3 |
-
from langchain import LLMChain, OpenAI, PromptTemplate
|
4 |
-
from langchain.embeddings import HuggingFaceEmbeddings
|
5 |
-
from langchain.llms import BaseLLM
|
6 |
-
from langchain.vectorstores import FAISS
|
7 |
-
from langchain.vectorstores.base import VectorStore
|
8 |
-
from pydantic import BaseModel, Field
|
9 |
import streamlit as st
|
10 |
|
11 |
-
class TaskCreationChain(LLMChain):
|
12 |
-
@classmethod
|
13 |
-
def from_llm(cls, llm: BaseLLM, objective: str, verbose: bool = True) -> LLMChain:
|
14 |
-
"""Get the response parser."""
|
15 |
-
task_creation_template = (
|
16 |
-
"You are an task creation AI that uses the result of an execution agent"
|
17 |
-
" to create new tasks with the following objective: {objective},"
|
18 |
-
" The last completed task has the result: {result}."
|
19 |
-
" This result was based on this task description: {task_description}."
|
20 |
-
" These are incomplete tasks: {incomplete_tasks}."
|
21 |
-
" Based on the result, create new tasks to be completed"
|
22 |
-
" by the AI system that do not overlap with incomplete tasks."
|
23 |
-
" Return the tasks as an array."
|
24 |
-
)
|
25 |
-
prompt = PromptTemplate(
|
26 |
-
template=task_creation_template,
|
27 |
-
partial_variables={"objective": objective},
|
28 |
-
input_variables=["result", "task_description", "incomplete_tasks"],
|
29 |
-
)
|
30 |
-
return cls(prompt=prompt, llm=llm, verbose=verbose)
|
31 |
-
|
32 |
-
def get_next_task(self, result: Dict, task_description: str, task_list: List[str]) -> List[Dict]:
|
33 |
-
"""Get the next task."""
|
34 |
-
incomplete_tasks = ", ".join(task_list)
|
35 |
-
response = self.run(result=result, task_description=task_description, incomplete_tasks=incomplete_tasks)
|
36 |
-
new_tasks = response.split('\n')
|
37 |
-
return [{"task_name": task_name} for task_name in new_tasks if task_name.strip()]
|
38 |
-
|
39 |
-
|
40 |
-
class TaskPrioritizationChain(LLMChain):
|
41 |
-
"""Chain to prioritize tasks."""
|
42 |
-
|
43 |
-
@classmethod
|
44 |
-
def from_llm(cls, llm: BaseLLM, objective: str, verbose: bool = True) -> LLMChain:
|
45 |
-
"""Get the response parser."""
|
46 |
-
task_prioritization_template = (
|
47 |
-
"You are an task prioritization AI tasked with cleaning the formatting of and reprioritizing"
|
48 |
-
" the following tasks: {task_names}."
|
49 |
-
" Consider the ultimate objective of your team: {objective}."
|
50 |
-
" Do not remove any tasks. Return the result as a numbered list, like:"
|
51 |
-
" #. First task"
|
52 |
-
" #. Second task"
|
53 |
-
" Start the task list with number {next_task_id}."
|
54 |
-
)
|
55 |
-
prompt = PromptTemplate(
|
56 |
-
template=task_prioritization_template,
|
57 |
-
partial_variables={"objective": objective},
|
58 |
-
input_variables=["task_names", "next_task_id"],
|
59 |
-
)
|
60 |
-
return cls(prompt=prompt, llm=llm, verbose=verbose)
|
61 |
-
|
62 |
-
def prioritize_tasks(self, this_task_id: int, task_list: List[Dict]) -> List[Dict]:
|
63 |
-
"""Prioritize tasks."""
|
64 |
-
task_names = [t["task_name"] for t in task_list]
|
65 |
-
next_task_id = int(this_task_id) + 1
|
66 |
-
response = self.run(task_names=task_names, next_task_id=next_task_id)
|
67 |
-
new_tasks = response.split('\n')
|
68 |
-
prioritized_task_list = []
|
69 |
-
for task_string in new_tasks:
|
70 |
-
if not task_string.strip():
|
71 |
-
continue
|
72 |
-
task_parts = task_string.strip().split(".", 1)
|
73 |
-
if len(task_parts) == 2:
|
74 |
-
task_id = task_parts[0].strip()
|
75 |
-
task_name = task_parts[1].strip()
|
76 |
-
prioritized_task_list.append({"task_id": task_id, "task_name": task_name})
|
77 |
-
return prioritized_task_list
|
78 |
-
|
79 |
-
|
80 |
-
class ExecutionChain(LLMChain):
|
81 |
-
"""Chain to execute tasks."""
|
82 |
-
|
83 |
-
vectorstore: VectorStore = Field(init=False)
|
84 |
-
|
85 |
-
@classmethod
|
86 |
-
def from_llm(cls, llm: BaseLLM, vectorstore: VectorStore, verbose: bool = True) -> LLMChain:
|
87 |
-
"""Get the response parser."""
|
88 |
-
execution_template = (
|
89 |
-
"You are an AI who performs one task based on the following objective: {objective}."
|
90 |
-
" Take into account these previously completed tasks: {context}."
|
91 |
-
" Your task: {task}."
|
92 |
-
" Response:"
|
93 |
-
)
|
94 |
-
prompt = PromptTemplate(
|
95 |
-
template=execution_template,
|
96 |
-
input_variables=["objective", "context", "task"],
|
97 |
-
)
|
98 |
-
return cls(prompt=prompt, llm=llm, verbose=verbose, vectorstore=vectorstore)
|
99 |
-
|
100 |
-
def _get_top_tasks(self, query: str, k: int) -> List[str]:
|
101 |
-
"""Get the top k tasks based on the query."""
|
102 |
-
results = self.vectorstore.similarity_search_with_score(query, k=k)
|
103 |
-
if not results:
|
104 |
-
return []
|
105 |
-
sorted_results, _ = zip(*sorted(results, key=lambda x: x[1], reverse=True))
|
106 |
-
return [str(item.metadata['task']) for item in sorted_results]
|
107 |
-
|
108 |
-
def execute_task(self, objective: str, task: str, k: int = 5) -> str:
|
109 |
-
"""Execute a task."""
|
110 |
-
context = self._get_top_tasks(query=objective, k=k)
|
111 |
-
return self.run(objective=objective, context=context, task=task)
|
112 |
-
|
113 |
-
|
114 |
-
class Message:
|
115 |
-
exp: st.expander
|
116 |
-
ai_icon = "./img/robot.png"
|
117 |
-
|
118 |
-
def __init__(self, label: str):
|
119 |
-
message_area, icon_area = st.columns([10, 1])
|
120 |
-
icon_area.image(self.ai_icon, caption="BabyAGI")
|
121 |
-
|
122 |
-
# Expander
|
123 |
-
self.exp = message_area.expander(label=label, expanded=True)
|
124 |
-
|
125 |
-
def __enter__(self):
|
126 |
-
return self
|
127 |
-
|
128 |
-
def __exit__(self, ex_type, ex_value, trace):
|
129 |
-
pass
|
130 |
-
|
131 |
-
def write(self, content):
|
132 |
-
self.exp.markdown(content)
|
133 |
-
|
134 |
-
|
135 |
-
class BabyAGI(BaseModel):
|
136 |
-
"""Controller model for the BabyAGI agent."""
|
137 |
-
|
138 |
-
objective: str = Field(alias="objective")
|
139 |
-
task_list: deque = Field(default_factory=deque)
|
140 |
-
task_creation_chain: TaskCreationChain = Field(...)
|
141 |
-
task_prioritization_chain: TaskPrioritizationChain = Field(...)
|
142 |
-
execution_chain: ExecutionChain = Field(...)
|
143 |
-
task_id_counter: int = Field(1)
|
144 |
-
|
145 |
-
def add_task(self, task: Dict):
|
146 |
-
self.task_list.append(task)
|
147 |
-
|
148 |
-
def print_task_list(self):
|
149 |
-
with Message(label="Task List") as m:
|
150 |
-
m.write("### Task List")
|
151 |
-
for t in self.task_list:
|
152 |
-
m.write("- " + str(t["task_id"]) + ": " + t["task_name"])
|
153 |
-
m.write("")
|
154 |
-
|
155 |
-
def print_next_task(self, task: Dict):
|
156 |
-
with Message(label="Next Task") as m:
|
157 |
-
m.write("### Next Task")
|
158 |
-
m.write("- " + str(task["task_id"]) + ": " + task["task_name"])
|
159 |
-
m.write("")
|
160 |
-
|
161 |
-
def print_task_result(self, result: str):
|
162 |
-
with Message(label="Task Result") as m:
|
163 |
-
m.write("### Task Result")
|
164 |
-
m.write(result)
|
165 |
-
m.write("")
|
166 |
-
|
167 |
-
def print_task_ending(self):
|
168 |
-
with Message(label="Task Ending") as m:
|
169 |
-
m.write("### Task Ending")
|
170 |
-
m.write("")
|
171 |
-
|
172 |
-
|
173 |
-
def run(self, max_iterations: Optional[int] = None):
|
174 |
-
"""Run the agent."""
|
175 |
-
num_iters = 0
|
176 |
-
while True:
|
177 |
-
if self.task_list:
|
178 |
-
self.print_task_list()
|
179 |
-
|
180 |
-
# Step 1: Pull the first task
|
181 |
-
task = self.task_list.popleft()
|
182 |
-
self.print_next_task(task)
|
183 |
-
|
184 |
-
# Step 2: Execute the task
|
185 |
-
result = self.execution_chain.execute_task(
|
186 |
-
self.objective, task["task_name"]
|
187 |
-
)
|
188 |
-
this_task_id = int(task["task_id"])
|
189 |
-
self.print_task_result(result)
|
190 |
-
|
191 |
-
# Step 3: Store the result in Pinecone
|
192 |
-
result_id = f"result_{task['task_id']}"
|
193 |
-
self.execution_chain.vectorstore.add_texts(
|
194 |
-
texts=[result],
|
195 |
-
metadatas=[{"task": task["task_name"]}],
|
196 |
-
ids=[result_id],
|
197 |
-
)
|
198 |
-
|
199 |
-
# Step 4: Create new tasks and reprioritize task list
|
200 |
-
new_tasks = self.task_creation_chain.get_next_task(
|
201 |
-
result, task["task_name"], [t["task_name"] for t in self.task_list]
|
202 |
-
)
|
203 |
-
for new_task in new_tasks:
|
204 |
-
self.task_id_counter += 1
|
205 |
-
new_task.update({"task_id": self.task_id_counter})
|
206 |
-
self.add_task(new_task)
|
207 |
-
self.task_list = deque(
|
208 |
-
self.task_prioritization_chain.prioritize_tasks(
|
209 |
-
this_task_id, list(self.task_list)
|
210 |
-
)
|
211 |
-
)
|
212 |
-
num_iters += 1
|
213 |
-
if max_iterations is not None and num_iters == max_iterations:
|
214 |
-
self.print_task_ending()
|
215 |
-
break
|
216 |
-
|
217 |
-
@classmethod
|
218 |
-
def from_llm_and_objectives(
|
219 |
-
cls,
|
220 |
-
llm: BaseLLM,
|
221 |
-
vectorstore: VectorStore,
|
222 |
-
objective: str,
|
223 |
-
first_task: str,
|
224 |
-
verbose: bool = False,
|
225 |
-
) -> "BabyAGI":
|
226 |
-
"""Initialize the BabyAGI Controller."""
|
227 |
-
task_creation_chain = TaskCreationChain.from_llm(
|
228 |
-
llm, objective, verbose=verbose
|
229 |
-
)
|
230 |
-
task_prioritization_chain = TaskPrioritizationChain.from_llm(
|
231 |
-
llm, objective, verbose=verbose
|
232 |
-
)
|
233 |
-
execution_chain = ExecutionChain.from_llm(llm, vectorstore, verbose=verbose)
|
234 |
-
controller = cls(
|
235 |
-
objective=objective,
|
236 |
-
task_creation_chain=task_creation_chain,
|
237 |
-
task_prioritization_chain=task_prioritization_chain,
|
238 |
-
execution_chain=execution_chain,
|
239 |
-
)
|
240 |
-
controller.add_task({"task_id": 1, "task_name": first_task})
|
241 |
-
return controller
|
242 |
-
|
243 |
-
|
244 |
def main():
|
245 |
-
st.
|
246 |
-
|
247 |
-
page_title="BabyAGI Streamlit",
|
248 |
-
layout="centered",
|
249 |
-
)
|
250 |
-
|
251 |
-
with st.sidebar:
|
252 |
-
openai_api_key = st.text_input('Your OpenAI API KEY', type="password")
|
253 |
-
|
254 |
-
st.title("BabyAGI Streamlit")
|
255 |
-
objective = st.text_input("Input Ultimate goal", "Solve world hunger")
|
256 |
-
first_task = st.text_input("Input Where to start", "Develop a task list")
|
257 |
-
max_iterations = st.number_input("Max iterations", value=3, min_value=1, step=1)
|
258 |
-
button = st.button("Run")
|
259 |
-
|
260 |
-
embedding_model = HuggingFaceEmbeddings()
|
261 |
-
vectorstore = FAISS.from_texts(["_"], embedding_model, metadatas=[{"task":first_task}])
|
262 |
-
|
263 |
-
if button:
|
264 |
-
try:
|
265 |
-
baby_agi = BabyAGI.from_llm_and_objectives(
|
266 |
-
llm=OpenAI(openai_api_key=openai_api_key),
|
267 |
-
vectorstore=vectorstore,
|
268 |
-
objective=objective,
|
269 |
-
first_task=first_task,
|
270 |
-
verbose=False
|
271 |
-
)
|
272 |
-
baby_agi.run(max_iterations=max_iterations)
|
273 |
-
except Exception as e:
|
274 |
-
st.error(e)
|
275 |
-
|
276 |
|
277 |
-
if __name__ ==
|
278 |
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
def main():
|
4 |
+
st.title("Hello, World!")
|
5 |
+
st.write("This is a basic Streamlit app.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
+
if __name__ == '__main__':
|
8 |
main()
|