Spaces:
Sleeping
Sleeping
File size: 3,110 Bytes
88d9c40 a328dd2 4e8ec3f 711aa3f 4e8ec3f dce9e22 4e8ec3f 66f9010 dce9e22 a328dd2 dce9e22 88d9c40 4e8ec3f 88d9c40 dce9e22 88d9c40 4e8ec3f 88d9c40 dce9e22 4e8ec3f dce9e22 4e8ec3f dce9e22 88d9c40 dce9e22 88d9c40 dce9e22 4e8ec3f dce9e22 4e8ec3f 88d9c40 dce9e22 88d9c40 4e8ec3f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 |
import gradio as gr
import json
from datetime import datetime
from theme import TufteInspired
import glob
import os
import uuid
from pathlib import Path
from huggingface_hub import InferenceClient
from openai import OpenAI
from huggingface_hub import get_token
from huggingface_hub import CommitScheduler, hf_hub_download, login
from prompts import detailed_genre_description_prompt, basic_prompt
import random
# TODOs
# 1. Add a login button
# 2. Prompt library expand
# 3. log user if logged in
client = OpenAI(
base_url="https://api-inference.huggingface.co/models/meta-llama/Meta-Llama-3-70B-Instruct/v1",
api_key=get_token(),
)
def generate_prompt():
if random.choice([True, False]):
return detailed_genre_description_prompt()
else:
return basic_prompt()
def generate_blurb():
max_tokens = random.randint(100, 1000)
prompt = generate_prompt()
print(prompt)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "user", "content": prompt},
],
stream=True,
max_tokens=max_tokens,
)
full_text = ""
for message in chat_completion:
full_text += message.choices[0].delta.content
yield full_text
# Function to log blurb and vote
def log_blurb_and_vote(blurb, vote):
log_entry = {"timestamp": datetime.now().isoformat(), "blurb": blurb, "vote": vote}
with open("blurb_log.jsonl", "a") as f:
f.write(json.dumps(log_entry) + "\n")
gr.Info("Thank you for voting!")
return f"Logged: {vote}"
# Create custom theme
tufte_theme = TufteInspired()
# Create Gradio interface
with gr.Blocks(theme=tufte_theme) as demo:
gr.Markdown("<h1 style='text-align: center;'>Would you read this book?</h1>")
gr.Markdown(
"""<p style='text-align: center;'>Looking for your next summer read?
Would you read a book based on this LLM generated blurb? <br> Your vote will be added to <a href="https://example.com">this</a> Hugging Face dataset</p>"""
+ """"""
)
# gr.LoginButton(size="sm")
user_name = gr.Textbox(label="User Name", placeholder="Enter your name")
with gr.Row():
generate_btn = gr.Button("Create a book", variant="primary")
blurb_output = gr.Markdown(label="Book blurb")
with gr.Row(visible=False) as voting_row:
upvote_btn = gr.Button("π would read")
downvote_btn = gr.Button("π wouldn't read")
vote_output = gr.Textbox(label="Vote Status", interactive=False, visible=False)
def show_voting_buttons(blurb):
return blurb, gr.Row(visible=True)
generate_btn.click(generate_blurb, outputs=blurb_output).then(
show_voting_buttons, inputs=blurb_output, outputs=[blurb_output, voting_row]
)
upvote_btn.click(
lambda x: log_blurb_and_vote(x, "upvote"),
inputs=blurb_output,
outputs=vote_output,
)
downvote_btn.click(
lambda x: log_blurb_and_vote(x, "downvote"),
inputs=blurb_output,
outputs=vote_output,
)
if __name__ == "__main__":
demo.launch()
|