import gradio as gr import transformers import torch import json from transformers import AutoTokenizer import os from huggingface_hub import login import spaces HF_TOKEN = os.getenv("HF_TOKEN") login(HF_TOKEN) # Load the model model_id = "meta-llama/Meta-Llama-3-8B-Instruct" tokenizer = AutoTokenizer.from_pretrained(model_id, add_special_tokens=True) pipeline = transformers.pipeline( "text-generation", model=model_id, model_kwargs={"torch_dtype": torch.bfloat16}, device="cuda", ) # Load the model configuration with open("model_configs.json", "r") as f: model_configs = json.load(f) model_config = model_configs[model_id] # Extract instruction extract_input = model_config["extract_input"] terminators = [ tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|eot_id|>"), ] @spaces.GPU def generate_instruction_response(): prompt_info = f"""Generating a user prompt from the LLM via the template \n\n ```{extract_input}```""" yield prompt_info instruction = pipeline( extract_input, max_new_tokens=2048, eos_token_id=terminators, do_sample=True, temperature=1, top_p=1, ) sanitized_instruction = instruction[0]["generated_text"][ len(extract_input) : ].split("\n")[0] first_step = "## LLM generated instruction:\n\n" + sanitized_instruction first_step = prompt_info + first_step yield first_step + "\n\n generating LLM response..." response_template = f"""<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\n{sanitized_instruction}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n""" response = pipeline( response_template, max_new_tokens=2048, eos_token_id=terminators, do_sample=True, temperature=1, top_p=1, ) assistant_response = response[0]["generated_text"][len(response_template) :] yield (first_step + "\n\n## LLM Generated response:\n\n" + assistant_response) title = "Magpie demo" description = """ This Gradio demo showcases the approach described in the Magpie paper. Magpie is a data synthesis pipeline that creates high-quality alignment data without relying on prompt engineering or seed questions. Instead, it generates instruction data by prompting aligned LLMs with a pre-query template. This method does not prompt the model with a question or starting query. Instead, it uses the model's pre-query template to generate instructions. Essentially, the model is given only the template until a user instruction starts, and then it generates the instruction and the response. In this demo, you can see how the model generates a user instruction and a model response. You can learn more about the approach [in the paper](https://huggingface.co./papers/2406.08464). """ # Create the Gradio interface iface = gr.Interface( fn=generate_instruction_response, inputs=[], outputs=[gr.Markdown("Generated data")], title=title, description=description, submit_btn="Generate Instructions Response Pair", ) # Launch the app iface.launch(debug=True)