import gradio as gr import transformers import torch import json from transformers import AutoTokenizer import os from huggingface_hub import login import spaces HF_TOKEN = os.getenv("HF_TOKEN") login(HF_TOKEN) # Load the model model_id = "meta-llama/Meta-Llama-3-8B-Instruct" tokenizer = AutoTokenizer.from_pretrained(model_id, add_special_tokens=True) pipeline = transformers.pipeline( "text-generation", model=model_id, model_kwargs={"torch_dtype": torch.bfloat16}, device="cuda", ) # Load the model configuration with open("model_configs.json", "r") as f: model_configs = json.load(f) model_config = model_configs[model_id] # Extract instruction extract_input = model_config["extract_input"] terminators = [ tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|eot_id|>"), ] @spaces.GPU def generate_instruction(): instruction = pipeline( extract_input, max_new_tokens=2048, eos_token_id=terminators, do_sample=True, temperature=1, top_p=1, ) return instruction[0]["generated_text"][len(extract_input) :].split("\n")[0] def generate_response(response_template): return pipeline( response_template, max_new_tokens=2048, eos_token_id=terminators, do_sample=True, temperature=1, top_p=1, ) def generate_instruction_response(): sanitized_instruction = generate_instruction() response_template = f"""<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\n{sanitized_instruction}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n""" user_message = sanitized_instruction response = generate_response(response_template) assistant_response = response[0]["generated_text"][len(response_template) :] return user_message, assistant_response title = "Magpie demo" description = """ This Gradio demo allows you to explore the approach outlined in the Magpie paper. "Magpie is a data synthesis pipeline that generates high-quality alignment data. Magpie does not rely on prompt engineering or seed questions. Instead, it directly constructs instruction data by prompting aligned LLMs with a pre-query template for sampling instructions." Essentially, instead of prompting the model with a question or a starting query, this approach relies on the pre-query template of the model to generate instructions. Essentially, you are giving the model only the template up to the point where a user instruction would start, and then the model generates the instruction and the response. In this demo, you can see how the model generates a user instruction and a model response. You can learn more about the approach [in the paper](https://huggingface.co./papers/2406.08464). """ # Create the Gradio interface iface = gr.Interface( fn=generate_instruction_response, inputs=[], outputs=[ gr.Text(label="Generated User Instruction"), gr.Text(label="Generated Model Response"), ], title=title, description=description, ) # Launch the app iface.launch(debug=True)