davanstrien HF staff commited on
Commit
9efbb95
·
1 Parent(s): c474bbd

improve output formatting

Browse files
Files changed (1) hide show
  1. app.py +35 -10
app.py CHANGED
@@ -35,8 +35,12 @@ terminators = [
35
 
36
  @spaces.GPU
37
  def generate_instruction_response():
38
- prompt_info = f"""Generating a user prompt from the LLM via the template \n\n
39
- ```{extract_input}```"""
 
 
 
 
40
  yield prompt_info
41
  instruction = pipeline(
42
  extract_input,
@@ -51,9 +55,10 @@ def generate_instruction_response():
51
  len(extract_input) :
52
  ].split("\n")[0]
53
 
54
- first_step = "## LLM generated instruction:\n\n" + sanitized_instruction
55
- first_step = prompt_info + first_step
56
- yield first_step + "\n\n generating LLM response..."
 
57
 
58
  response_template = f"""<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\n{sanitized_instruction}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"""
59
 
@@ -68,14 +73,34 @@ def generate_instruction_response():
68
 
69
  assistant_response = response[0]["generated_text"][len(response_template) :]
70
 
71
- yield (first_step + "\n\n## LLM Generated response:\n\n" + assistant_response)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72
 
73
 
74
- title = "Magpie demo"
75
  description = """
76
- This Gradio demo showcases the approach described in the Magpie paper. Magpie is a data synthesis pipeline that creates high-quality alignment data without relying on prompt engineering or seed questions. Instead, it generates instruction data by prompting aligned LLMs with a pre-query template. This method does not prompt the model with a question or starting query. Instead, it uses the model's pre-query template to generate instructions. Essentially, the model is given only the template until a user instruction starts, and then it generates the instruction and the response.
77
 
78
- In this demo, you can see how the model generates a user instruction and a model response.
79
 
80
  You can learn more about the approach [in the paper](https://huggingface.co/papers/2406.08464).
81
  """
@@ -83,7 +108,7 @@ You can learn more about the approach [in the paper](https://huggingface.co/pape
83
  iface = gr.Interface(
84
  fn=generate_instruction_response,
85
  inputs=[],
86
- outputs=[gr.Markdown("Generated data")],
87
  title=title,
88
  description=description,
89
  submit_btn="Generate Instructions Response Pair",
 
35
 
36
  @spaces.GPU
37
  def generate_instruction_response():
38
+ prompt_info = f"""### Generating user prompt using the template:
39
+
40
+ ```
41
+ {extract_input}
42
+ ```
43
+ """
44
  yield prompt_info
45
  instruction = pipeline(
46
  extract_input,
 
55
  len(extract_input) :
56
  ].split("\n")[0]
57
 
58
+ first_step = (
59
+ prompt_info + f"### LLM generated instruction:\n\n{sanitized_instruction}"
60
+ )
61
+ yield first_step + "\n\n### Generating LLM response..."
62
 
63
  response_template = f"""<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\n{sanitized_instruction}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"""
64
 
 
73
 
74
  assistant_response = response[0]["generated_text"][len(response_template) :]
75
 
76
+ final_output = f"""### Template used for generating instruction:
77
+
78
+ ```
79
+ {extract_input}
80
+ ```
81
+
82
+ ### LLM Generated Instruction:
83
+
84
+ {sanitized_instruction}
85
+
86
+ ### Template used for generating response:
87
+
88
+ ```
89
+ {response_template}
90
+ ```
91
+
92
+ ### LLM Generated Response:
93
+
94
+ {assistant_response}
95
+ """
96
+ yield final_output
97
 
98
 
99
+ title = "Magpie Demo"
100
  description = """
101
+ This Gradio demo showcases the approach described in the Magpie paper. Magpie is a data synthesis pipeline that creates high-quality alignment data without relying on prompt engineering or seed questions. Instead, it generates instruction data by prompting aligned LLMs with a pre-query template.
102
 
103
+ In this demo, you can see how the model generates a user instruction and a model response, along with the templates used in the process.
104
 
105
  You can learn more about the approach [in the paper](https://huggingface.co/papers/2406.08464).
106
  """
 
108
  iface = gr.Interface(
109
  fn=generate_instruction_response,
110
  inputs=[],
111
+ outputs=[gr.Markdown(label="Generated Data")],
112
  title=title,
113
  description=description,
114
  submit_btn="Generate Instructions Response Pair",