davanstrien HF staff commited on
Commit
5188e86
·
verified ·
0 Parent(s):

Super-squash branch 'main' using huggingface_hub

Browse files
Files changed (5) hide show
  1. .gitattributes +35 -0
  2. README.md +12 -0
  3. app.py +90 -0
  4. model_configs.json +55 -0
  5. requirements.txt +3 -0
.gitattributes ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: Magpie
3
+ emoji: 🔥
4
+ colorFrom: red
5
+ colorTo: indigo
6
+ sdk: gradio
7
+ sdk_version: 4.36.1
8
+ app_file: app.py
9
+ pinned: false
10
+ ---
11
+
12
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
app.py ADDED
@@ -0,0 +1,90 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import transformers
3
+ import torch
4
+ import json
5
+ from transformers import AutoTokenizer
6
+ import os
7
+ from huggingface_hub import login
8
+ import spaces
9
+
10
+ HF_TOKEN = os.getenv("HF_TOKEN")
11
+ login(HF_TOKEN)
12
+ # Load the model
13
+ model_id = "meta-llama/Meta-Llama-3-8B-Instruct"
14
+ tokenizer = AutoTokenizer.from_pretrained(model_id, add_special_tokens=True)
15
+
16
+ pipeline = transformers.pipeline(
17
+ "text-generation",
18
+ model=model_id,
19
+ model_kwargs={"torch_dtype": torch.bfloat16},
20
+ device="cuda",
21
+ )
22
+
23
+ # Load the model configuration
24
+ with open("model_configs.json", "r") as f:
25
+ model_configs = json.load(f)
26
+ model_config = model_configs[model_id]
27
+
28
+ # Extract instruction
29
+ extract_input = model_config["extract_input"]
30
+
31
+
32
+ @spaces.GPU
33
+ def generate_instruction_response():
34
+ terminators = [
35
+ tokenizer.eos_token_id,
36
+ tokenizer.convert_tokens_to_ids("<|eot_id|>"),
37
+ ]
38
+
39
+ instruction = pipeline(
40
+ extract_input,
41
+ max_new_tokens=2048,
42
+ eos_token_id=terminators,
43
+ do_sample=True,
44
+ temperature=1,
45
+ top_p=1,
46
+ )
47
+
48
+ sanitized_instruction = instruction[0]["generated_text"][
49
+ len(extract_input) :
50
+ ].split("\n")[0]
51
+
52
+ response_template = f"""<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\n{sanitized_instruction}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"""
53
+
54
+ response = pipeline(
55
+ response_template,
56
+ max_new_tokens=2048,
57
+ eos_token_id=terminators,
58
+ do_sample=True,
59
+ temperature=1,
60
+ top_p=1,
61
+ )
62
+
63
+ user_message = sanitized_instruction
64
+ assistant_response = response[0]["generated_text"][len(response_template) :]
65
+
66
+ return user_message, assistant_response
67
+
68
+
69
+ title = "Magpie demo"
70
+ description = """
71
+ This Gradio demo allows you to explore the approach outlined in the Magpie paper. "Magpie is a data synthesis pipeline that generates high-quality alignment data. Magpie does not rely on prompt engineering or seed questions. Instead, it directly constructs instruction data by prompting aligned LLMs with a pre-query template for sampling instructions." Essentially, instead of prompting the model with a question or a starting query, this approach relies on the pre-query template of the model to generate instructions. Essentially, you are giving the model only the template up to the point where a user instruction would start, and then the model generates the instruction and the response.
72
+
73
+ In this demo, you can see how the model generates a user instruction and a model response.
74
+
75
+ You can learn more about the approach [in the paper](https://huggingface.co/papers/2406.08464).
76
+ """
77
+ # Create the Gradio interface
78
+ iface = gr.Interface(
79
+ fn=generate_instruction_response,
80
+ inputs=[],
81
+ outputs=[
82
+ gr.Text(label="Generated User Instruction"),
83
+ gr.Text(label="Generated Model Response"),
84
+ ],
85
+ title=title,
86
+ description=description,
87
+ )
88
+
89
+ # Launch the app
90
+ iface.launch(debug=True)
model_configs.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "meta-llama/Meta-Llama-3-8B-Instruct": {
3
+ "model_name": "meta-llama/Meta-Llama-3-8B-Instruct",
4
+ "stop_tokens": [
5
+ "<|eot_id|>",
6
+ "<|end_of_text|>",
7
+ "<|starter_header_id|>",
8
+ "<|end_header_id|>",
9
+ "assistant"
10
+ ],
11
+ "stop_token_ids": [
12
+ 128009,
13
+ 128001,
14
+ 128006,
15
+ 128007,
16
+ 78191
17
+ ],
18
+ "extract_input": "<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\n",
19
+ "extract_input_with_system_prompt": "<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\nA chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.<|eot_id|><|start_header_id|>user<|end_header_id|>\n\n"
20
+ },
21
+ "meta-llama/Meta-Llama-3-70B-Instruct": {
22
+ "model_name": "meta-llama/Meta-Llama-3-70B-Instruct",
23
+ "stop_tokens": [
24
+ "<|eot_id|>",
25
+ "<|end_of_text|>",
26
+ "<|starter_header_id|>",
27
+ "<|end_header_id|>",
28
+ "assistant"
29
+ ],
30
+ "stop_token_ids": [
31
+ 128009,
32
+ 128001,
33
+ 128006,
34
+ 128007,
35
+ 78191
36
+ ],
37
+ "extract_input": "<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\n"
38
+ },
39
+ "meta-llama/Llama-2-7b-chat-hf": {
40
+ "model_name": "meta-llama/Llama-2-7b-chat-hf",
41
+ "stop_tokens": [
42
+ "</s>",
43
+ "<s>",
44
+ "<unk>",
45
+ "assistant"
46
+ ],
47
+ "stop_token_ids": [
48
+ 2,
49
+ 1,
50
+ 0,
51
+ 20255
52
+ ],
53
+ "extract_input": "[INST] "
54
+ }
55
+ }
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ transformers[torch]
2
+ accelerate
3
+ gradio