import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("instruction-pretrain/instruction-synthesizer") tokenizer = AutoTokenizer.from_pretrained("instruction-pretrain/instruction-synthesizer") def parse_pred(pred): """Extract the list of instruction-response pairs from the prediction""" QA_str_list = pred.split('') if not pred.endswith(''): QA_str_list = QA_str_list[:-1] QA_list = [] raw_questions = [] for QA_str in QA_str_list: try: assert len(QA_str.split('')) == 2, f'invalid QA string: {QA_str}' Q_str, A_str = QA_str.split('') Q_str, A_str = Q_str.strip(), A_str.strip() assert Q_str.startswith(''), f'invalid question string: {Q_str} in QA_str: {QA_str}' assert len(A_str) > 0, f'invalid answer string in QA_str: {QA_str}' Q_str = Q_str.replace('', '').strip() assert Q_str.lower() not in raw_questions, f'duplicate question: {Q_str}' QA_list.append({'Q': Q_str, 'A': A_str}) raw_questions.append(Q_str.lower()) except: pass return QA_list def get_instruction_response_pairs(context): '''Prompt the synthesizer to generate instruction-response pairs based on the given context''' prompt = f' {context} \n\n' inputs = tokenizer(prompt, add_special_tokens=False, return_tensors="pt").input_ids.to(model.device) outputs = model.generate(input_ids=inputs, max_new_tokens=400, do_sample=False)[0] pred_start = int(inputs.shape[-1]) pred = tokenizer.decode(outputs[pred_start:], skip_special_tokens=True) return parse_pred(pred) def generate_pairs(context): instruction_response_pairs = get_instruction_response_pairs(context) output = "" for index, pair in enumerate(instruction_response_pairs): output += f"## Instruction {index + 1}:\n{pair['Q']}\n## Response {index + 1}:\n{pair['A']}\n\n" return output # Create Gradio interface iface = gr.Interface( fn=generate_pairs, inputs=gr.Textbox(lines=5, label="Enter context here"), outputs=gr.Textbox(lines=20, label="Generated Instruction-Response Pairs"), title="Instruction-Response Pair Generator", description="Enter a context, and the model will generate relevant instruction-response pairs." ) # Launch the interface iface.launch()