import torch import gradio as gr from transformers import pipeline MODEL_NAME = "openai/whisper-small" # this always needs to stay in line 8 :D sorry for the hackiness lang = "en" device = 0 if torch.cuda.is_available() else "cpu" pipe = pipeline( task="automatic-speech-recognition", model=MODEL_NAME, chunk_length_s=30, device=device, ) pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids(language=lang, task="transcribe") def transcribe(microphone, file_upload): warn_output = "" if microphone and file_upload: warn_output = ( "WARNING: You've uploaded an audio file and used the microphone. " "The recorded file from the microphone will be used, and the uploaded audio will be discarded.\n" ) elif not (microphone or file_upload): return "ERROR: You have to either use the microphone or upload an audio file." file = microphone if microphone else file_upload text = pipe(file)["text"] return warn_output + text examples = [ ['Martin Luther king - FREE AT LAST.mp3'], ['Winston Churchul - ARCH OF VICTOR.mp3'], ['Voice of Neil Armstrong.mp3'], ['Speeh by George Washington.mp3'], ['Speech by John Kennedy.mp3'], ['Al Gore on Inventing the Internet.mp3'], ['Alan Greenspan.mp3'], ['Neil Armstrong - ONE SMALL STEP.mp3'], ['General Eisenhower announcing D-Day landing.mp3'], ['Hey Siri.wav'] ] css = """ footer {display:none !important} .output-markdown{display:none !important} button.primary { z-index: 14; left: 0px; top: 0px; cursor: pointer !important; background: none rgb(17, 20, 45) !important; border: none !important; color: rgb(255, 255, 255) !important; line-height: 1 !important; border-radius: 6px !important; transition: box-shadow 200ms ease 0s, background 200ms ease 0s !important; box-shadow: none !important; } button.primary:hover{ z-index: 14; left: 0px; top: 0px; cursor: pointer !important; background: none rgb(66, 133, 244) !important; border: none !important; color: rgb(255, 255, 255) !important; line-height: 1 !important; border-radius: 6px !important; transition: box-shadow 200ms ease 0s, background 200ms ease 0s !important; box-shadow: rgb(0 0 0 / 23%) 0px 1px 7px 0px !important; } button.gallery-item:hover { border-color: rgb(37 56 133) !important; background-color: rgb(229,225,255) !important; } """ with gr.Blocks(css=css) as demo: with gr.Row(): gr.Markdown("## Speech Recognition Demo") with gr.Row(): mic_input = gr.Audio(label="Microphone Input", interactive=True, type="filepath") file_upload = gr.Audio(label="File Upload", interactive=True, type="filepath") with gr.Row(): output = gr.Textbox(label="Transcription Output") with gr.Row(): gr.Examples(examples=examples, inputs=[file_upload], label="Examples") transcribe_button = gr.Button("Transcribe") transcribe_button.click(transcribe, inputs=[mic_input, file_upload], outputs=[output]) demo.launch()