datasciencedojo's picture
Update app.py
bdb71a5 verified
import torch
import gradio as gr
from transformers import pipeline
MODEL_NAME = "openai/whisper-small" # this always needs to stay in line 8 :D sorry for the hackiness
lang = "en"
device = 0 if torch.cuda.is_available() else "cpu"
pipe = pipeline(
task="automatic-speech-recognition",
model=MODEL_NAME,
chunk_length_s=30,
device=device,
)
pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids(language=lang, task="transcribe")
def transcribe(microphone, file_upload):
warn_output = ""
if microphone and file_upload:
warn_output = (
"WARNING: You've uploaded an audio file and used the microphone. "
"The recorded file from the microphone will be used, and the uploaded audio will be discarded.\n"
)
elif not (microphone or file_upload):
return "ERROR: You have to either use the microphone or upload an audio file."
file = microphone if microphone else file_upload
text = pipe(file)["text"]
return warn_output + text
examples = [
['Martin Luther king - FREE AT LAST.mp3'],
['Winston Churchul - ARCH OF VICTOR.mp3'],
['Voice of Neil Armstrong.mp3'],
['Speeh by George Washington.mp3'],
['Speech by John Kennedy.mp3'],
['Al Gore on Inventing the Internet.mp3'],
['Alan Greenspan.mp3'],
['Neil Armstrong - ONE SMALL STEP.mp3'],
['General Eisenhower announcing D-Day landing.mp3'],
['Hey Siri.wav']
]
css = """
footer {display:none !important}
.output-markdown{display:none !important}
button.primary {
z-index: 14;
left: 0px;
top: 0px;
cursor: pointer !important;
background: none rgb(17, 20, 45) !important;
border: none !important;
color: rgb(255, 255, 255) !important;
line-height: 1 !important;
border-radius: 6px !important;
transition: box-shadow 200ms ease 0s, background 200ms ease 0s !important;
box-shadow: none !important;
}
button.primary:hover{
z-index: 14;
left: 0px;
top: 0px;
cursor: pointer !important;
background: none rgb(66, 133, 244) !important;
border: none !important;
color: rgb(255, 255, 255) !important;
line-height: 1 !important;
border-radius: 6px !important;
transition: box-shadow 200ms ease 0s, background 200ms ease 0s !important;
box-shadow: rgb(0 0 0 / 23%) 0px 1px 7px 0px !important;
}
button.gallery-item:hover {
border-color: rgb(37 56 133) !important;
background-color: rgb(229,225,255) !important;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Row():
gr.Markdown("## Speech Recognition Demo")
with gr.Row():
mic_input = gr.Audio(label="Microphone Input", interactive=True, type="filepath")
file_upload = gr.Audio(label="File Upload", interactive=True, type="filepath")
with gr.Row():
output = gr.Textbox(label="Transcription Output")
with gr.Row():
gr.Examples(examples=examples, inputs=[file_upload], label="Examples")
transcribe_button = gr.Button("Transcribe")
transcribe_button.click(transcribe, inputs=[mic_input, file_upload], outputs=[output])
demo.launch()