|
import torch |
|
import gradio as gr |
|
from transformers import pipeline |
|
|
|
MODEL_NAME = "openai/whisper-small" |
|
lang = "en" |
|
|
|
device = 0 if torch.cuda.is_available() else "cpu" |
|
pipe = pipeline( |
|
task="automatic-speech-recognition", |
|
model=MODEL_NAME, |
|
chunk_length_s=30, |
|
device=device, |
|
) |
|
|
|
pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids(language=lang, task="transcribe") |
|
|
|
def transcribe(microphone, file_upload): |
|
warn_output = "" |
|
if microphone and file_upload: |
|
warn_output = ( |
|
"WARNING: You've uploaded an audio file and used the microphone. " |
|
"The recorded file from the microphone will be used, and the uploaded audio will be discarded.\n" |
|
) |
|
|
|
elif not (microphone or file_upload): |
|
return "ERROR: You have to either use the microphone or upload an audio file." |
|
|
|
file = microphone if microphone else file_upload |
|
text = pipe(file)["text"] |
|
return warn_output + text |
|
|
|
examples = [ |
|
['Martin Luther king - FREE AT LAST.mp3'], |
|
['Winston Churchul - ARCH OF VICTOR.mp3'], |
|
['Voice of Neil Armstrong.mp3'], |
|
['Speeh by George Washington.mp3'], |
|
['Speech by John Kennedy.mp3'], |
|
['Al Gore on Inventing the Internet.mp3'], |
|
['Alan Greenspan.mp3'], |
|
['Neil Armstrong - ONE SMALL STEP.mp3'], |
|
['General Eisenhower announcing D-Day landing.mp3'], |
|
['Hey Siri.wav'] |
|
] |
|
|
|
css = """ |
|
footer {display:none !important} |
|
.output-markdown{display:none !important} |
|
button.primary { |
|
z-index: 14; |
|
left: 0px; |
|
top: 0px; |
|
cursor: pointer !important; |
|
background: none rgb(17, 20, 45) !important; |
|
border: none !important; |
|
color: rgb(255, 255, 255) !important; |
|
line-height: 1 !important; |
|
border-radius: 6px !important; |
|
transition: box-shadow 200ms ease 0s, background 200ms ease 0s !important; |
|
box-shadow: none !important; |
|
} |
|
button.primary:hover{ |
|
z-index: 14; |
|
left: 0px; |
|
top: 0px; |
|
cursor: pointer !important; |
|
background: none rgb(66, 133, 244) !important; |
|
border: none !important; |
|
color: rgb(255, 255, 255) !important; |
|
line-height: 1 !important; |
|
border-radius: 6px !important; |
|
transition: box-shadow 200ms ease 0s, background 200ms ease 0s !important; |
|
box-shadow: rgb(0 0 0 / 23%) 0px 1px 7px 0px !important; |
|
} |
|
button.gallery-item:hover { |
|
border-color: rgb(37 56 133) !important; |
|
background-color: rgb(229,225,255) !important; |
|
} |
|
""" |
|
|
|
with gr.Blocks(css=css) as demo: |
|
with gr.Row(): |
|
gr.Markdown("## Speech Recognition Demo") |
|
with gr.Row(): |
|
mic_input = gr.Audio(label="Microphone Input", interactive=True, type="filepath") |
|
file_upload = gr.Audio(label="File Upload", interactive=True, type="filepath") |
|
with gr.Row(): |
|
output = gr.Textbox(label="Transcription Output") |
|
with gr.Row(): |
|
gr.Examples(examples=examples, inputs=[file_upload], label="Examples") |
|
|
|
transcribe_button = gr.Button("Transcribe") |
|
transcribe_button.click(transcribe, inputs=[mic_input, file_upload], outputs=[output]) |
|
|
|
demo.launch() |
|
|