darthPanda commited on
Commit
b9970ea
1 Parent(s): e78c815

pre-alpha-release-v0.0

Browse files
.gitignore ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ .env
2
+ wandb
__pycache__/app.cpython-39.pyc ADDED
Binary file (1.93 kB). View file
 
__pycache__/asr_openai.cpython-39.pyc ADDED
Binary file (1.13 kB). View file
 
__pycache__/falcon_7b_llm.cpython-39.pyc ADDED
Binary file (4.5 kB). View file
 
__pycache__/tts_elevenlabs.cpython-39.pyc ADDED
Binary file (1.27 kB). View file
 
app.py ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from asr_openai import AutomaticSpeechRecognition
3
+ from tts_elevenlabs import ElevenLabsTTS
4
+ from falcon_7b_llm import Falcon_7b_llm
5
+ import logging
6
+ import os
7
+
8
+ logging.basicConfig(level=logging.INFO)
9
+
10
+ def delete_files_in_folder(folder_path):
11
+ for filename in os.listdir(folder_path):
12
+ file_path = os.path.join(folder_path, filename)
13
+
14
+ # Check if it's a file (and not a directory)
15
+ if os.path.isfile(file_path):
16
+ os.remove(file_path)
17
+
18
+ def generate_response(input_audio):
19
+ sentence = asr.run_transcription(input_audio)
20
+ # sentence = 'how are you?'
21
+ print(sentence)
22
+ llm_response = llm.get_llm_response(sentence['text'])
23
+ output_audio = tts.tts_generate_audio(llm_response)
24
+ # output_audio = tts.tts_generate_audio(sentence)
25
+ chatbot_history.append(((input_audio,), (output_audio,)))
26
+ return chatbot_history
27
+
28
+ delete_files_in_folder('data//tts_responses')
29
+
30
+ title = "<h1 style='text-align: center; color: #ffffff; font-size: 40px;'> 🦅 Falcon Barista"
31
+
32
+ asr = AutomaticSpeechRecognition()
33
+ tts = ElevenLabsTTS()
34
+ llm = Falcon_7b_llm()
35
+ chatbot_history = []
36
+
37
+ def restart_chat():
38
+ delete_files_in_folder('data//tts_responses')
39
+ global chatbot_history
40
+ chatbot_history = []
41
+ tts.restart_state()
42
+ llm.restart_state()
43
+ return chatbot_history
44
+
45
+ with gr.Blocks() as demo:
46
+ gr.Markdown(title)
47
+ with gr.Row():
48
+ gr.Image('data//falcon.png', label="Look how cute is Falcon Barista")
49
+ with gr.Column():
50
+ chatbot = gr.Chatbot(label='Chat with Falcon Barista', avatar_images=('data//user_avatar_logo.png','data//falcon_logo_transparent.png'))
51
+ with gr.Row():
52
+ mic = gr.Audio(source="microphone", type='filepath', scale=3)
53
+ mic.stop_recording(generate_response, mic, chatbot)
54
+ restart_btn = gr.Button(value="Restart Chat", scale=1)
55
+ restart_btn.click(restart_chat, outputs=[chatbot])
56
+
57
+ if __name__ == "__main__":
58
+ demo.launch()
asr_openai.py ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import openai
2
+ import os
3
+ import time
4
+ import logging
5
+ from dotenv import load_dotenv
6
+
7
+ # Load the .env file
8
+ load_dotenv()
9
+
10
+ openai.api_key = os.getenv("OPENAI_API_KEY")
11
+
12
+ class AutomaticSpeechRecognition():
13
+ """
14
+ Class for automatic speech recognition(ASR).
15
+
16
+ This class uses faster whisper model for low latency ASR
17
+
18
+ Args:
19
+ model_size: size of model (small, base, etc.)
20
+ """
21
+ def __init__(self):
22
+ pass
23
+
24
+ def run_transcription(self, filepath):
25
+ audio_file= open(filepath, "rb")
26
+ sentence = openai.Audio.transcribe("whisper-1", audio_file)
27
+
28
+ logging.debug(f'transcription: {sentence}')
29
+
30
+ return sentence
data/falcon_logo.png ADDED
data/falcon_logo_transparent.png ADDED
data/user_avatar_logo.png ADDED
falcon_7b_llm.py ADDED
@@ -0,0 +1,150 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from langchain.memory import ConversationBufferMemory
2
+ from langchain.prompts import PromptTemplate
3
+ from langchain.chains import ConversationChain
4
+ import os
5
+ import runpod
6
+ from dotenv import load_dotenv
7
+ from langchain.llms import HuggingFaceTextGenInference
8
+ from langchain.schema import BaseOutputParser
9
+ import re
10
+ import re
11
+ from typing import List
12
+ from langchain.schema import BaseOutputParser
13
+ import torch
14
+ from transformers import (
15
+ AutoTokenizer,
16
+ StoppingCriteria,
17
+ )
18
+
19
+ # Load the .env file
20
+ load_dotenv()
21
+
22
+ # Get the API key from the environment variable
23
+ runpod.api_key = os.getenv("RUNPOD_API_KEY")
24
+ os.environ["LANGCHAIN_WANDB_TRACING"] = "true"
25
+ os.environ["WANDB_PROJECT"] = "falcon_hackathon"
26
+ os.environ["WANDB_API_KEY"] = os.getenv("WANDB_API_KEY")
27
+ pod_id = os.getenv("POD_ID")
28
+
29
+ class CleanupOutputParser(BaseOutputParser):
30
+ def parse(self, text: str) -> str:
31
+ user_pattern = r"\nUser"
32
+ text = re.sub(user_pattern, "", text)
33
+ human_pattern = r"\nHuman:"
34
+ text = re.sub(human_pattern, "", text)
35
+ ai_pattern = r"\nAI:"
36
+ return re.sub(ai_pattern, "", text).strip()
37
+
38
+ @property
39
+ def _type(self) -> str:
40
+ return "output_parser"
41
+
42
+ class StopGenerationCriteria(StoppingCriteria):
43
+ def __init__(
44
+ self, tokens: List[List[str]], tokenizer: AutoTokenizer, device: torch.device
45
+ ):
46
+ stop_token_ids = [tokenizer.convert_tokens_to_ids(t) for t in tokens]
47
+ self.stop_token_ids = [
48
+ torch.tensor(x, dtype=torch.long, device=device) for x in stop_token_ids
49
+ ]
50
+
51
+ def __call__(
52
+ self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs
53
+ ) -> bool:
54
+ for stop_ids in self.stop_token_ids:
55
+ if torch.eq(input_ids[0][-len(stop_ids) :], stop_ids).all():
56
+ return True
57
+ return False
58
+
59
+
60
+
61
+ class Falcon_7b_llm():
62
+ def __init__(self):
63
+ inference_server_url_cloud = f"https://{pod_id}-80.proxy.runpod.net"
64
+
65
+ template = """You are a chatbot called 'Falcon Barista' working at a coffee shop.
66
+ Your primary function is to take orders from customers.
67
+ Start with a greeting.
68
+ You have the following menu with prices. Dont mention the price unless asked. Do not take order for anything other than in menu.
69
+ - cappucino-5$
70
+ - latte-3$
71
+ - frappucino-8$
72
+ - juice-3$
73
+ If user orders something else, apologise that you dont have that item.
74
+ Take the order politely and in a frienldy way. After that confirm the order, tell the order price and say "Goodbye have a nice day".
75
+
76
+ {chat_history}
77
+ Human: {human_input}
78
+ AI:"""
79
+
80
+ prompt = PromptTemplate(
81
+ input_variables=["chat_history", "human_input"], template=template
82
+ )
83
+ memory = ConversationBufferMemory(memory_key="chat_history")
84
+
85
+ llm_cloud = HuggingFaceTextGenInference(
86
+ inference_server_url=inference_server_url_cloud,
87
+ max_new_tokens=200,
88
+ top_k=10,
89
+ top_p=0.95,
90
+ typical_p=0.95,
91
+ temperature=0.01,
92
+ repetition_penalty=1.0,
93
+ stop_sequences = ['Mini', 'AI', 'Human', ':']
94
+ )
95
+
96
+ self.llm_chain_cloud = ConversationChain(
97
+ prompt=prompt,
98
+ llm=llm_cloud,
99
+ verbose=True,
100
+ memory=memory,
101
+ output_parser=CleanupOutputParser(),
102
+ input_key='human_input'
103
+ )
104
+
105
+ def restart_state(self):
106
+ inference_server_url_cloud = f"https://{pod_id}-80.proxy.runpod.net"
107
+
108
+ template = """You are a chatbot called 'Falcon Barista' working at a coffee shop.
109
+ Your primary function is to take orders from customers.
110
+ Start with a greeting.
111
+ You have the following menu with prices. Dont mention the price unless asked. Do not take order for anything other than in menu.
112
+ - cappucino-5$
113
+ - latte-3$
114
+ - frappucino-8$
115
+ - juice-3$
116
+ If user orders something else, apologise that you dont have that item.
117
+ Take the order politely and in a frienldy way. After that confirm the order, tell the order price and say "Goodbye have a nice day".
118
+
119
+ {chat_history}
120
+ Human: {human_input}
121
+ AI:"""
122
+
123
+ prompt = PromptTemplate(
124
+ input_variables=["chat_history", "human_input"], template=template
125
+ )
126
+ memory = ConversationBufferMemory(memory_key="chat_history")
127
+
128
+ llm_cloud = HuggingFaceTextGenInference(
129
+ inference_server_url=inference_server_url_cloud,
130
+ max_new_tokens=200,
131
+ top_k=10,
132
+ top_p=0.95,
133
+ typical_p=0.95,
134
+ temperature=0.01,
135
+ repetition_penalty=1.0,
136
+ stop_sequences = ['Mini', 'AI', 'Human', ':']
137
+ )
138
+
139
+ self.llm_chain_cloud = ConversationChain(
140
+ prompt=prompt,
141
+ llm=llm_cloud,
142
+ verbose=True,
143
+ memory=memory,
144
+ output_parser=CleanupOutputParser(),
145
+ input_key='human_input'
146
+ )
147
+
148
+ def get_llm_response(self, human_input):
149
+ completion = self.llm_chain_cloud.predict(human_input=human_input)
150
+ return completion
requirements.txt ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ text-generation
2
+ langchain
3
+ transformers
4
+ runpod
5
+ python-dotenv
6
+ gradio
7
+ pyaudio
8
+ scipy
9
+ elevenlabs
10
+ openai
11
+ torch
12
+ wandb
tts_elevenlabs.py ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import elevenlabs
2
+ from elevenlabs import generate, save
3
+ import os
4
+ from dotenv import load_dotenv
5
+
6
+ # Load the .env file
7
+ load_dotenv()
8
+
9
+ elevenlabs_api_key = os.getenv("ELEVEN_LABS_API_KEY")
10
+ elevenlabs.set_api_key(elevenlabs_api_key)
11
+
12
+ class ElevenLabsTTS():
13
+ """
14
+ Class for Eleven Labs TTS.
15
+
16
+ This class uses elevenlab free tier to give TTS response
17
+
18
+ Args:
19
+ None
20
+ """
21
+ def __init__(self):
22
+ self.response_number = 0
23
+ pass
24
+
25
+ def restart_state(self):
26
+ self.response_number = 0
27
+
28
+ def tts_generate_audio(self, input):
29
+ audio = generate(text=input, voice="Giovanni")
30
+ self.response_number = self.response_number + 1
31
+ file_path = f"data//tts_responses//test_{self.response_number}.wav"
32
+ save(
33
+ audio, # Audio bytes (returned by generate)
34
+ file_path
35
+ )
36
+ return file_path