Spaces:
Runtime error
Runtime error
from fastapi import FastAPI, HTTPException | |
from transformers import AutoModelForSeq2SeqLM | |
from IndicTransToolkit import IndicProcessor | |
from typing import List | |
import os | |
# Set the HF_HOME environment variable to a writable directory | |
os.environ["HF_HOME"] = "/app/cache" | |
os.environ["TRANSFORMERS_CACHE"] = "/app/cache" | |
model = AutoModelForSeq2SeqLM.from_pretrained("ai4bharat/indictrans2-en-indic-1B", trust_remote_code=True) | |
ip = IndicProcessor(inference=True) | |
app = FastAPI() | |
# Define request body with Pydantic | |
class InputData(BaseModel): | |
sentences: List[str] | |
target_lang: str | |
# API endpoint to receive input and return predictions | |
async def predict(input_data: InputData): | |
try: | |
result = model(input_data.text) | |
return {"output": result} | |
src_lang, tgt_lang = "eng_Latn", input_data.target_lang | |
batch = ip.preprocess_batch( | |
input_sentences, | |
src_lang=src_lang, | |
tgt_lang=tgt_lang, | |
) | |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu" | |
# Tokenize the sentences and generate input encodings | |
inputs = tokenizer( | |
batch, | |
truncation=True, | |
padding="longest", | |
return_tensors="pt", | |
return_attention_mask=True, | |
).to(DEVICE) | |
# Generate translations using the model | |
with torch.no_grad(): | |
generated_tokens = model.generate( | |
**inputs, | |
use_cache=True, | |
min_length=0, | |
max_length=256, | |
num_beams=5, | |
num_return_sequences=1, | |
) | |
# Decode the generated tokens into text | |
with tokenizer.as_target_tokenizer(): | |
generated_tokens = tokenizer.batch_decode( | |
generated_tokens.detach().cpu().tolist(), | |
skip_special_tokens=True, | |
clean_up_tokenization_spaces=True, | |
) | |
# Postprocess the translations, including entity replacement | |
translations = ip.postprocess_batch(generated_tokens, lang=tgt_lang) | |
return {"output": translations} | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=str(e)) | |