Spaces:
Runtime error
Runtime error
#0.1 Install Dependencies | |
#!pip install unsloth torch transformers datasets trl huggingface_hub | |
#0.2 Import Dependencies | |
from unsloth import FastLanguageModel | |
import torch | |
import os | |
from transformers import TextStreamer | |
from datasets import load_dataset | |
from trl import SFTTrainer | |
from transformers import TrainingArguments | |
from unsloth import is_bfloat16_supported | |
# 1. Configuration | |
max_seq_length = 1024 | |
dtype = None | |
load_in_4bit = True | |
alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. | |
### Instruction: | |
{} | |
### Input: | |
{} | |
### Response: | |
{}""" | |
instruction = """This assistant is trained to code executive ranks and roles along the following categories with 1 or 0. | |
Ranks: | |
- VP: 1 if Vice President (VP), 0 otherwise | |
- SVP: 1 if Senior Vice President (SVP), 0 otherwise | |
- EVP: 1 if Executive Vice President (EVP), 0 otherwise | |
- SEVP: 1 if Senior Executive Vice President (SEVP), 0 otherwise | |
- Director: 1 if Director, 0 otherwise | |
- Senior Director: 1 if Senior Director, 0 otherwise | |
- MD: 1 if Managing Director (MD), 0 otherwise | |
- SMD: 1 if Senior Managing Director (SMD), 0 otherwise | |
- SE: 1 if Senior Executive, 0 otherwise | |
- VC: 1 if Vice Chair (VC), 0 otherwise | |
- SVC: 1 if Senior Vice Chair (SVC), 0 otherwise | |
- President: 1 if President of the parent company, 0 when President of subsidiary or division but not parent company. | |
Roles: | |
- Board: 1 when role suggests person is a member of the board of directors, 0 otherwise | |
- CEO: 1 when Chief Executive Officer of parent company, 0 when Chief Executive Officer of a subsidiary but not parent company. | |
- CXO: 1 when C-Suite title, i.e., Chief X Officer, where X can be any type of designation, 0 otherwise. Chief Executive Officer of the parent company. Not Chief AND Officer, e.g., only officer of a function. | |
- Primary: 1 when responsible for primary activity of value chain, i.e., Supply Chain, Manufacturing, Operations, Marketing & Sales, Customer Service and alike, 0 when not a primary value chain activity. | |
- Support: 1 when responsible for a support activity of the value chain, i.e., Procurement, IT, HR, Management, Strategy, HR, Finance, Legal, R&D, Investor Relations, Technology, General Counsel and alike, 0 when not support activity of the value. | |
- BU: 1 when involved with an entity/distinct unit responsible for Product, Customer, or Geographical domain/unit; or role is about a subsidiary, 0 when responsibility is not for a specific product/customer/geography area but, for example, for the entire parent company.""" | |
input = "In 2015 the company 'cms' had an executive with the name david mengebier, whose official role title was: 'senior vice president, cms energy and consumers energy'." | |
# 2. Before Training | |
model, tokenizer = FastLanguageModel.from_pretrained( | |
model_name = "unsloth/Meta-Llama-3.1-8B-bnb-4bit", | |
max_seq_length = max_seq_length, | |
dtype = dtype, | |
load_in_4bit = load_in_4bit, | |
token = os.getenv("HF_TOKEN") | |
) | |
FastLanguageModel.for_inference(model) # Enable native 2x faster inference | |
inputs = tokenizer( | |
[ | |
alpaca_prompt.format( | |
instruction, # instruction | |
input, # input | |
"", # output - leave this blank for generation! | |
) | |
], return_tensors = "pt").to("cuda") | |
text_streamer = TextStreamer(tokenizer) | |
_ = model.generate(**inputs, streamer = text_streamer, max_new_tokens = 1000) | |
# 3. Load data | |
EOS_TOKEN = tokenizer.eos_token # Must add EOS_TOKEN | |
def formatting_prompts_func(examples): | |
instructions = examples["instruction"] | |
inputs = examples["input"] | |
outputs = examples["output"] | |
texts = [] | |
for instruction, input, output in zip(instructions, inputs, outputs): | |
text = alpaca_prompt.format(instruction, input, output) + EOS_TOKEN | |
texts.append(text) | |
return { "text" : texts, } | |
pass | |
#dataset = load_dataset("daresearch/orgdatabase-training0-data", split = "train") | |
#dataset = dataset.map(formatting_prompts_func, batched = True,) | |
# Load train and validation datasets | |
train_dataset = load_dataset("csv", data_files="train.csv", split="train") | |
valid_dataset = load_dataset("csv", data_files="valid.csv", split="train") | |
# Apply formatting to both datasets | |
train_dataset = train_dataset.map(formatting_prompts_func, batched=True) | |
valid_dataset = valid_dataset.map(formatting_prompts_func, batched=True) | |
# 4. Training | |
model = FastLanguageModel.get_peft_model( | |
model, | |
r=16, # Choose any number > 0 ! Suggested 8, 16, 32, 64, 128 | |
target_modules=["q_proj", "k_proj", "v_proj", "o_proj", | |
"gate_proj", "up_proj", "down_proj"], | |
lora_alpha=16, | |
lora_dropout=0.05, # Supports any, but = 0 is optimized | |
bias="none", # Supports any, but = "none" is optimized | |
use_gradient_checkpointing="unsloth", # True or "unsloth" for very long context | |
random_state=3407, | |
use_rslora=False, # We support rank stabilized LoRA | |
loftq_config=None, # And LoftQ | |
) | |
trainer = SFTTrainer( | |
model=model, | |
tokenizer=tokenizer, | |
train_dataset=train_dataset, | |
eval_dataset=valid_dataset, | |
dataset_text_field="text", | |
max_seq_length=max_seq_length, | |
dataset_num_proc=8, # Increase parallelism | |
packing=True, # Enable sequence packing | |
args=TrainingArguments( | |
per_device_train_batch_size=32, # Lower batch size to prevent memory issues | |
gradient_accumulation_steps=1, # Maintain effective batch size | |
warmup_steps=5, | |
max_steps=-1, # Train in smaller chunks | |
num_train_epochs=3, # Test with fewer epochs | |
learning_rate=2e-4, | |
fp16=not is_bfloat16_supported(), | |
bf16=is_bfloat16_supported(), | |
logging_steps=10, # Log less frequently | |
evaluation_strategy="steps", | |
eval_steps=50, # Evaluate less frequently | |
max_grad_norm=1.0, # Add gradient clipping | |
optim="adamw_8bit", | |
weight_decay=0.01, | |
lr_scheduler_type="linear", | |
seed=3407, | |
output_dir="outputs", | |
), | |
) | |
# Show current memory stats | |
gpu_stats = torch.cuda.get_device_properties(0) | |
start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3) | |
max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3) | |
print(f"GPU = {gpu_stats.name}. Max memory = {max_memory} GB.") | |
print(f"{start_gpu_memory} GB of memory reserved.") | |
trainer_stats = trainer.train() | |
# Show final memory and time stats | |
used_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3) | |
used_memory_for_lora = round(used_memory - start_gpu_memory, 3) | |
used_percentage = round(used_memory / max_memory * 100, 3) | |
lora_percentage = round(used_memory_for_lora / max_memory * 100, 3) | |
print(f"{trainer_stats.metrics['train_runtime']} seconds used for training.") | |
print(f"{round(trainer_stats.metrics['train_runtime'] / 60, 2)} minutes used for training.") | |
print(f"Peak reserved memory = {used_memory} GB.") | |
print(f"Peak reserved memory for training = {used_memory_for_lora} GB.") | |
print(f"Peak reserved memory % of max memory = {used_percentage} %.") | |
print(f"Peak reserved memory for training % of max memory = {lora_percentage} %.") | |
# Optionally evaluate after training if desired | |
eval_stats = trainer.evaluate(eval_dataset=valid_dataset) | |
print(f"Validation Loss: {eval_stats['eval_loss']}") | |
if "eval_accuracy" in eval_stats: | |
print(f"Validation Accuracy: {eval_stats['eval_accuracy']}") | |
# 5. After Training | |
FastLanguageModel.for_inference(model) # Enable native 2x faster inference | |
inputs = tokenizer( | |
[ | |
alpaca_prompt.format( | |
instruction, # instruction | |
input, # input | |
"", # output - leave this blank for generation! | |
) | |
], return_tensors = "pt").to("cuda") | |
text_streamer = TextStreamer(tokenizer) | |
_ = model.generate(**inputs, streamer = text_streamer, max_new_tokens = 1000) | |
# 6. Saving | |
#model.save_pretrained("lora_model") # Local saving | |
#tokenizer.save_pretrained("lora_model") | |
huggingface_model_name = "daresearch/Llama-3.1-8B-bnb-4bit-exec-roles" | |
model.push_to_hub(huggingface_model_name, token = os.getenv("HF_TOKEN")) | |
tokenizer.push_to_hub(huggingface_model_name, token = os.getenv("HF_TOKEN")) | |
merged_huggingface_model_name = "daresearch/Llama-3.1-8B-bnb-4bit-M-exec-roles" | |
# Merge to 16bit | |
if True: model.save_pretrained_merged("model", tokenizer, save_method = "merged_16bit",) | |
if True: model.push_to_hub_merged(merged_huggingface_model_name, tokenizer, save_method = "merged_16bit", token = os.getenv("HF_TOKEN")) | |
# # Merge to 4bit | |
#if True: model.save_pretrained_merged("model", tokenizer, save_method = "merged_4bit",) | |
#if True: model.push_to_hub_merged(huggingface_model_name, tokenizer, save_method = "merged_4bit", token = os.getenv("HF_TOKEN")) |