Spaces:
Runtime error
Runtime error
add param tags instead of neurons
Browse files- .DS_Store +0 -0
- app.py +4 -4
- speaking_probes/generate.py +84 -16
.DS_Store
CHANGED
Binary files a/.DS_Store and b/.DS_Store differ
|
|
app.py
CHANGED
@@ -17,17 +17,17 @@ def load_model(model_name):
|
|
17 |
col1, col2, col3, *_ = st.columns(5)
|
18 |
model_name = col1.selectbox("Select a model: ", options=['gpt2', 'gpt2-medium', 'gpt2-large'])
|
19 |
model, model_params, tokenizer = load_model(model_name)
|
20 |
-
neuron_layer = col2.text_input("Layer: ", value='0')
|
21 |
-
neuron_dim = col3.text_input("Dim: ", value='0')
|
|
|
22 |
|
23 |
-
neurons = model_params.K_heads[int(neuron_layer), int(neuron_dim)]
|
24 |
prompt = st.text_area("Prompt: ")
|
25 |
submitted = st.button("Send!")
|
26 |
|
27 |
if submitted:
|
28 |
with st.spinner('Wait for it..'):
|
29 |
model, model_params, tokenizer = map(deepcopy, (model, model_params, tokenizer))
|
30 |
-
decoded = speaking_probe(model, model_params, tokenizer, prompt,
|
31 |
repetition_penalty=2., num_generations=3,
|
32 |
min_length=1, do_sample=True,
|
33 |
max_new_tokens=100)
|
|
|
17 |
col1, col2, col3, *_ = st.columns(5)
|
18 |
model_name = col1.selectbox("Select a model: ", options=['gpt2', 'gpt2-medium', 'gpt2-large'])
|
19 |
model, model_params, tokenizer = load_model(model_name)
|
20 |
+
# neuron_layer = col2.text_input("Layer: ", value='0')
|
21 |
+
# neuron_dim = col3.text_input("Dim: ", value='0')
|
22 |
+
# neurons = model_params.K_heads[int(neuron_layer), int(neuron_dim)]
|
23 |
|
|
|
24 |
prompt = st.text_area("Prompt: ")
|
25 |
submitted = st.button("Send!")
|
26 |
|
27 |
if submitted:
|
28 |
with st.spinner('Wait for it..'):
|
29 |
model, model_params, tokenizer = map(deepcopy, (model, model_params, tokenizer))
|
30 |
+
decoded = speaking_probe(model, model_params, tokenizer, prompt,
|
31 |
repetition_penalty=2., num_generations=3,
|
32 |
min_length=1, do_sample=True,
|
33 |
max_new_tokens=100)
|
speaking_probes/generate.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
import numpy as np
|
2 |
from copy import deepcopy
|
3 |
import matplotlib.pyplot as plt
|
@@ -29,11 +30,20 @@ from argparse import ArgumentParser
|
|
29 |
class ModelParameters:
|
30 |
K_heads: torch.Tensor
|
31 |
num_layers: int
|
32 |
-
d_int: int
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
-
def extract_gpt_parameters(model):
|
36 |
-
emb = model.get_output_embeddings().weight.data.T
|
37 |
num_layers = model.config.n_layer
|
38 |
num_heads = model.config.n_head
|
39 |
hidden_dim = model.config.n_embd
|
@@ -41,23 +51,63 @@ def extract_gpt_parameters(model):
|
|
41 |
|
42 |
K = torch.cat([model.get_parameter(f"transformer.h.{j}.mlp.c_fc.weight").T
|
43 |
for j in range(num_layers)]).detach()
|
44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
for j in range(num_layers)]).detach()
|
46 |
-
|
47 |
-
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
for j in range(num_layers)]).detach()
|
50 |
|
51 |
K_heads = K.reshape(num_layers, -1, hidden_dim)
|
52 |
-
V_heads = V.reshape(num_layers, -1, hidden_dim)
|
53 |
d_int = K_heads.shape[1]
|
|
|
|
|
|
|
54 |
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
|
63 |
def encode(token, tokenizer):
|
@@ -125,14 +175,29 @@ class ParamListStructureEnforcer(LogitsProcessor):
|
|
125 |
|
126 |
|
127 |
# speaking probe
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
def speaking_probe(model, model_params, tokenizer, prompt, *neurons,
|
129 |
num_generations=1, layer_range=None, bad_words_ids=[], output_neurons=False,
|
130 |
return_outputs=False, logits_processor=LogitsProcessorList([]), **kwargs):
|
131 |
num_non_neuron_tokens = len(tokenizer)
|
132 |
tokenizer_with_neurons = deepcopy(tokenizer)
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
has_extra_neurons = len(neurons) > 0
|
134 |
if has_extra_neurons:
|
135 |
-
tokenizer_with_neurons.add_tokens(
|
136 |
model.resize_token_embeddings(len(tokenizer_with_neurons))
|
137 |
model.transformer.wte.weight.data[-len(neurons):] = torch.stack(neurons, dim=0)
|
138 |
|
@@ -160,7 +225,8 @@ def speaking_probe(model, model_params, tokenizer, prompt, *neurons,
|
|
160 |
**kwargs)
|
161 |
|
162 |
decoded = tokenizer_with_neurons.batch_decode(outputs.sequences, skip_special_tokens=True)
|
163 |
-
|
|
|
164 |
if has_extra_neurons:
|
165 |
model.resize_token_embeddings(num_non_neuron_tokens)
|
166 |
model.transformer.wte.weight.data = model.transformer.wte.weight.data[:num_non_neuron_tokens]
|
@@ -188,6 +254,7 @@ if __name__ == "__main__":
|
|
188 |
parser.add_argument('--max_length', type=int, default=100)
|
189 |
parser.add_argument('--max_new_tokens', type=int, default=None)
|
190 |
parser.add_argument('--repetition_penalty', type=float, default=2.)
|
|
|
191 |
|
192 |
args = parser.parse_args()
|
193 |
# TODO: first make them mutually exclusive
|
@@ -213,6 +280,7 @@ if __name__ == "__main__":
|
|
213 |
num_generations=args.num_generations,
|
214 |
repetition_penalty=args.repetition_penalty,
|
215 |
num_beams=args.num_beams, top_p=args.top_p, top_k=args.top_k,
|
|
|
216 |
min_length=args.min_length, do_sample=not args.no_sample,
|
217 |
max_length=args.max_length, max_new_tokens=args.max_new_tokens)
|
218 |
for i in range(len(decoded)):
|
|
|
1 |
+
import re
|
2 |
import numpy as np
|
3 |
from copy import deepcopy
|
4 |
import matplotlib.pyplot as plt
|
|
|
30 |
class ModelParameters:
|
31 |
K_heads: torch.Tensor
|
32 |
num_layers: int
|
33 |
+
d_int: int
|
34 |
+
num_heads: int
|
35 |
+
hidden_dim: int
|
36 |
+
head_size: int
|
37 |
+
V_heads: torch.Tensor = None
|
38 |
+
W_Q_heads: torch.Tensor = None
|
39 |
+
W_K_heads: torch.Tensor = None
|
40 |
+
W_V_heads: torch.Tensor = None
|
41 |
+
W_O_heads: torch.Tensor = None
|
42 |
+
emb: torch.Tensor = None
|
43 |
+
|
44 |
+
|
45 |
|
46 |
+
def extract_gpt_parameters(model, full=False):
|
|
|
47 |
num_layers = model.config.n_layer
|
48 |
num_heads = model.config.n_head
|
49 |
hidden_dim = model.config.n_embd
|
|
|
51 |
|
52 |
K = torch.cat([model.get_parameter(f"transformer.h.{j}.mlp.c_fc.weight").T
|
53 |
for j in range(num_layers)]).detach()
|
54 |
+
|
55 |
+
K_heads = K.reshape(num_layers, -1, hidden_dim)
|
56 |
+
d_int = K_heads.shape[1]
|
57 |
+
model_params = ModelParameters(K_heads=K_heads, num_layers=num_layers, d_int=d_int,
|
58 |
+
hidden_dim=hidden_dim, head_size=head_size,
|
59 |
+
num_heads=num_heads)
|
60 |
+
|
61 |
+
if full:
|
62 |
+
emb = model.get_output_embeddings().weight.data.T
|
63 |
+
V = torch.cat([model.get_parameter(f"transformer.h.{j}.mlp.c_proj.weight")
|
64 |
for j in range(num_layers)]).detach()
|
65 |
+
W_Q, W_K, W_V = torch.cat([model.get_parameter(f"transformer.h.{j}.attn.c_attn.weight")
|
66 |
+
for j in range(num_layers)]).detach().chunk(3, dim=-1)
|
67 |
+
W_O = torch.cat([model.get_parameter(f"transformer.h.{j}.attn.c_proj.weight")
|
68 |
+
for j in range(num_layers)]).detach()
|
69 |
+
|
70 |
+
model_params.V_heads = V.reshape(num_layers, -1, hidden_dim)
|
71 |
+
model_params.W_V_heads = W_V.reshape(num_layers, hidden_dim, num_heads, head_size).permute(0, 2, 1, 3)
|
72 |
+
model_params.W_O_heads = W_O.reshape(num_layers, num_heads, head_size, hidden_dim)
|
73 |
+
model_params.W_Q_heads = W_Q.reshape(num_layers, hidden_dim, num_heads, head_size).permute(0, 2, 1, 3)
|
74 |
+
model_params.W_K_heads = W_K.reshape(num_layers, hidden_dim, num_heads, head_size).permute(0, 2, 1, 3)
|
75 |
+
model_params.emb = emb
|
76 |
+
return model_params
|
77 |
+
|
78 |
+
|
79 |
+
def extract_gpt_j_parameters(model, full=False):
|
80 |
+
num_layers = model.config.n_layer
|
81 |
+
num_heads = model.config.n_head
|
82 |
+
hidden_dim = model.config.n_embd
|
83 |
+
head_size = hidden_dim // num_heads
|
84 |
+
|
85 |
+
K = torch.cat([model.get_parameter(f"transformer.h.{j}.mlp.fc_in.weight").T
|
86 |
for j in range(num_layers)]).detach()
|
87 |
|
88 |
K_heads = K.reshape(num_layers, -1, hidden_dim)
|
|
|
89 |
d_int = K_heads.shape[1]
|
90 |
+
model_params = ModelParameters(K_heads=K_heads, num_layers=num_layers, d_int=d_int,
|
91 |
+
hidden_dim=hidden_dim, head_size=head_size,
|
92 |
+
num_heads=num_heads)
|
93 |
|
94 |
+
if full:
|
95 |
+
raise NotImplementedError
|
96 |
+
# emb = model.get_output_embeddings().weight.data.T
|
97 |
+
# V = torch.cat([model.get_parameter(f"transformer.h.{j}.mlp.c_proj.weight")
|
98 |
+
# for j in range(num_layers)]).detach()
|
99 |
+
# W_Q, W_K, W_V = torch.cat([model.get_parameter(f"transformer.h.{j}.attn.c_attn.weight")
|
100 |
+
# for j in range(num_layers)]).detach().chunk(3, dim=-1)
|
101 |
+
# W_O = torch.cat([model.get_parameter(f"transformer.h.{j}.attn.c_proj.weight")
|
102 |
+
# for j in range(num_layers)]).detach()
|
103 |
|
104 |
+
# model_params.V_heads = V.reshape(num_layers, -1, hidden_dim)
|
105 |
+
# model_params.W_V_heads = W_V.reshape(num_layers, hidden_dim, num_heads, head_size).permute(0, 2, 1, 3)
|
106 |
+
# model_params.W_O_heads = W_O.reshape(num_layers, num_heads, head_size, hidden_dim)
|
107 |
+
# model_params.W_Q_heads = W_Q.reshape(num_layers, hidden_dim, num_heads, head_size).permute(0, 2, 1, 3)
|
108 |
+
# model_params.W_K_heads = W_K.reshape(num_layers, hidden_dim, num_heads, head_size).permute(0, 2, 1, 3)
|
109 |
+
# model_params.emb = emb
|
110 |
+
return model_params
|
111 |
|
112 |
|
113 |
def encode(token, tokenizer):
|
|
|
175 |
|
176 |
|
177 |
# speaking probe
|
178 |
+
def _preprocess_prompt(model_params, prompt):
|
179 |
+
K_heads = model_params.K_heads
|
180 |
+
prompt = re.sub(r'([^ ]|\A)(<neuron>|<param_\d+_\d+>)', lambda m: f'{m.group(1)} {m.group(2)}', prompt)
|
181 |
+
param_neuron_idxs = [(int(a), int(b)) for a, b in re.findall(r' <param_(\d+)_(\d+)>', prompt)]
|
182 |
+
param_neuron_tokens = [f' <param_{a}_{b}>' for a, b in param_neuron_idxs]
|
183 |
+
param_neurons = [deepcopy(K_heads[a, b]) for a, b in param_neuron_idxs]
|
184 |
+
return prompt, param_neuron_tokens, param_neurons
|
185 |
+
|
186 |
+
|
187 |
def speaking_probe(model, model_params, tokenizer, prompt, *neurons,
|
188 |
num_generations=1, layer_range=None, bad_words_ids=[], output_neurons=False,
|
189 |
return_outputs=False, logits_processor=LogitsProcessorList([]), **kwargs):
|
190 |
num_non_neuron_tokens = len(tokenizer)
|
191 |
tokenizer_with_neurons = deepcopy(tokenizer)
|
192 |
+
|
193 |
+
# adding neurons to the tokenizer
|
194 |
+
neuron_tokens = [f" <neuron{i+1 if i > 0 else ''}>" for i in range(len(neurons))]
|
195 |
+
prompt, param_neuron_tokens, param_neurons = _preprocess_prompt(model_params, prompt)
|
196 |
+
neuron_tokens.extend(param_neuron_tokens)
|
197 |
+
neurons = neurons + tuple(param_neurons)
|
198 |
has_extra_neurons = len(neurons) > 0
|
199 |
if has_extra_neurons:
|
200 |
+
tokenizer_with_neurons.add_tokens(neuron_tokens)
|
201 |
model.resize_token_embeddings(len(tokenizer_with_neurons))
|
202 |
model.transformer.wte.weight.data[-len(neurons):] = torch.stack(neurons, dim=0)
|
203 |
|
|
|
225 |
**kwargs)
|
226 |
|
227 |
decoded = tokenizer_with_neurons.batch_decode(outputs.sequences, skip_special_tokens=True)
|
228 |
+
|
229 |
+
# TODO: add `finally` statement
|
230 |
if has_extra_neurons:
|
231 |
model.resize_token_embeddings(num_non_neuron_tokens)
|
232 |
model.transformer.wte.weight.data = model.transformer.wte.weight.data[:num_non_neuron_tokens]
|
|
|
254 |
parser.add_argument('--max_length', type=int, default=100)
|
255 |
parser.add_argument('--max_new_tokens', type=int, default=None)
|
256 |
parser.add_argument('--repetition_penalty', type=float, default=2.)
|
257 |
+
parser.add_argument('--temperature', type=float, default=1.)
|
258 |
|
259 |
args = parser.parse_args()
|
260 |
# TODO: first make them mutually exclusive
|
|
|
280 |
num_generations=args.num_generations,
|
281 |
repetition_penalty=args.repetition_penalty,
|
282 |
num_beams=args.num_beams, top_p=args.top_p, top_k=args.top_k,
|
283 |
+
temperature=args.temperature,
|
284 |
min_length=args.min_length, do_sample=not args.no_sample,
|
285 |
max_length=args.max_length, max_new_tokens=args.max_new_tokens)
|
286 |
for i in range(len(decoded)):
|