Spaces:
Runtime error
Runtime error
first commit
Browse files- .DS_Store +0 -0
- app.py +28 -0
- speaking_probes/generate.py +218 -0
.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
app.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from speaking_probes.generate import extract_gpt_parameters, speaking_probe
|
3 |
+
|
4 |
+
|
5 |
+
@st.cache
|
6 |
+
def load_model(model_name):
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
+
tokenizer.pad_token = tokenizer.eos_token
|
9 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
10 |
+
model_params = extract_gpt_parameters(model_name)
|
11 |
+
return model, model_params, tokenizer
|
12 |
+
|
13 |
+
|
14 |
+
model_name = st.selectbox("Select a model: ", options=['gpt2', 'gpt2-medium', 'gpt2-large'])
|
15 |
+
model, model_params, tokenizer = load_model(model_name)
|
16 |
+
|
17 |
+
neuron_layer = st.text_input("Layer: ")
|
18 |
+
neuron_dim = st.text_dim("Dim: ")
|
19 |
+
neurons = K_heads[int(neuron_layer), int(neuron_dim)]
|
20 |
+
prompt = st.text_area("Prompt: ")
|
21 |
+
submitted = st.button("Send!")
|
22 |
+
|
23 |
+
|
24 |
+
if submitted:
|
25 |
+
speaking_probe(model, model_params, tokenizer, prompt, *neurons, num_generations=1,
|
26 |
+
repetition_penalty=2.,
|
27 |
+
num_beams=3, min_length=1, do_sample=True,
|
28 |
+
max_new_tokens=100)
|
speaking_probes/generate.py
ADDED
@@ -0,0 +1,218 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
from copy import deepcopy
|
3 |
+
import matplotlib.pyplot as plt
|
4 |
+
from torch import nn
|
5 |
+
import torch
|
6 |
+
import torch.nn.functional as F
|
7 |
+
from transformers import AutoConfig, AutoTokenizer, AutoModel
|
8 |
+
import gc
|
9 |
+
import numpy as np
|
10 |
+
from copy import deepcopy
|
11 |
+
import matplotlib.pyplot as plt
|
12 |
+
from torch import nn
|
13 |
+
import torch
|
14 |
+
import torch.nn.functional as F
|
15 |
+
import transformers
|
16 |
+
from transformers import AutoConfig, AutoTokenizer, AutoModel
|
17 |
+
from transformers import AutoModelForCausalLM
|
18 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, MaxLengthCriteria, StoppingCriteriaList
|
19 |
+
from transformers import DataCollatorWithPadding
|
20 |
+
from transformers import LogitsProcessor, LogitsProcessorList, LogitsWarper
|
21 |
+
from torch.utils.data import DataLoader
|
22 |
+
from datasets import load_dataset
|
23 |
+
from tqdm.auto import tqdm
|
24 |
+
from dataclasses import dataclass
|
25 |
+
from argparse import ArgumentParser
|
26 |
+
|
27 |
+
|
28 |
+
@dataclass
|
29 |
+
class ModelParameters:
|
30 |
+
K_heads: torch.Tensor
|
31 |
+
num_layers: int
|
32 |
+
d_int: int
|
33 |
+
|
34 |
+
|
35 |
+
def extract_gpt_parameters(model):
|
36 |
+
emb = model.get_output_embeddings().weight.data.T
|
37 |
+
num_layers = model.config.n_layer
|
38 |
+
num_heads = model.config.n_head
|
39 |
+
hidden_dim = model.config.n_embd
|
40 |
+
head_size = hidden_dim // num_heads
|
41 |
+
|
42 |
+
K = torch.cat([model.get_parameter(f"transformer.h.{j}.mlp.c_fc.weight").T
|
43 |
+
for j in range(num_layers)]).detach()
|
44 |
+
V = torch.cat([model.get_parameter(f"transformer.h.{j}.mlp.c_proj.weight")
|
45 |
+
for j in range(num_layers)]).detach()
|
46 |
+
W_Q, W_K, W_V = torch.cat([model.get_parameter(f"transformer.h.{j}.attn.c_attn.weight")
|
47 |
+
for j in range(num_layers)]).detach().chunk(3, dim=-1)
|
48 |
+
W_O = torch.cat([model.get_parameter(f"transformer.h.{j}.attn.c_proj.weight")
|
49 |
+
for j in range(num_layers)]).detach()
|
50 |
+
|
51 |
+
K_heads = K.reshape(num_layers, -1, hidden_dim)
|
52 |
+
V_heads = V.reshape(num_layers, -1, hidden_dim)
|
53 |
+
d_int = K_heads.shape[1]
|
54 |
+
|
55 |
+
W_V_heads = W_V.reshape(num_layers, hidden_dim, num_heads, head_size).permute(0, 2, 1, 3)
|
56 |
+
W_O_heads = W_O.reshape(num_layers, num_heads, head_size, hidden_dim)
|
57 |
+
W_Q_heads = W_Q.reshape(num_layers, hidden_dim, num_heads, head_size).permute(0, 2, 1, 3)
|
58 |
+
W_K_heads = W_K.reshape(num_layers, hidden_dim, num_heads, head_size).permute(0, 2, 1, 3)
|
59 |
+
|
60 |
+
return ModelParameters(K_heads=K_heads, num_layers=num_layers, d_int=d_int)
|
61 |
+
|
62 |
+
|
63 |
+
def encode(token, tokenizer):
|
64 |
+
assert (type(token) == str)
|
65 |
+
encoded = tokenizer.encode(token)
|
66 |
+
assert (len(encoded) == 1)
|
67 |
+
return encoded[0]
|
68 |
+
|
69 |
+
|
70 |
+
def read_and_go(path):
|
71 |
+
with open(path, 'r') as f:
|
72 |
+
return f.read()
|
73 |
+
|
74 |
+
|
75 |
+
def extend_model_and_tokenizer(model, model_params, tokenizer, min_layer=0,
|
76 |
+
max_layer=None):
|
77 |
+
if max_layer is None:
|
78 |
+
max_layer = len(model_params.K_heads)-1
|
79 |
+
relevant_neurons = model_params.K_heads[min_layer:max_layer+1]
|
80 |
+
num_regular_tokens = len(tokenizer)
|
81 |
+
new_tokens = [f" <param_{layer}_{dim}>" for layer in range(min_layer, max_layer+1)
|
82 |
+
for dim in range(relevant_neurons.shape[1])]
|
83 |
+
|
84 |
+
tokenizer_extended = deepcopy(tokenizer)
|
85 |
+
model_extended = deepcopy(model)
|
86 |
+
|
87 |
+
tokenizer_extended.add_tokens(new_tokens)
|
88 |
+
model_extended.resize_token_embeddings(len(tokenizer_extended))
|
89 |
+
model_extended.transformer.wte.weight.data[-len(new_tokens):] = relevant_neurons.flatten(0, -2)
|
90 |
+
return model_extended, tokenizer_extended
|
91 |
+
|
92 |
+
|
93 |
+
# logit processors
|
94 |
+
class NeuronTokenBan(LogitsWarper):
|
95 |
+
def __init__(self, num_non_neuron_tokens, ban_penalty=-np.inf):
|
96 |
+
self.ban_penalty = ban_penalty
|
97 |
+
self.num_non_neuron_tokens = num_non_neuron_tokens
|
98 |
+
|
99 |
+
def __call__(self, input_ids: torch.Tensor, scores: torch.Tensor) -> torch.FloatTensor:
|
100 |
+
scores[:, self.num_non_neuron_tokens:] = self.ban_penalty
|
101 |
+
return scores
|
102 |
+
|
103 |
+
|
104 |
+
class ParamListStructureEnforcer(LogitsProcessor):
|
105 |
+
def __init__(self, tokenizer, num_regular_tokens):
|
106 |
+
self.tokenizer = tokenizer
|
107 |
+
self.num_regular_tokens = num_regular_tokens
|
108 |
+
|
109 |
+
def __call__(self, input_ids: torch.Tensor, scores: torch.Tensor) -> torch.FloatTensor:
|
110 |
+
last_input_id = input_ids[0, -1]
|
111 |
+
tokenizer = self.tokenizer
|
112 |
+
num_regular_tokens = self.num_regular_tokens
|
113 |
+
|
114 |
+
comma_id = encode(',', tokenizer)
|
115 |
+
eos_score, comma_score = deepcopy(scores[:, tokenizer.eos_token_id]), deepcopy(scores[:, comma_id])
|
116 |
+
|
117 |
+
if last_input_id >= num_regular_tokens:
|
118 |
+
scores[:] = -np.inf
|
119 |
+
scores[:, comma_id] = comma_score
|
120 |
+
else:
|
121 |
+
scores[:, :num_regular_tokens] = -np.inf
|
122 |
+
|
123 |
+
scores[:, tokenizer.eos_token_id] = eos_score
|
124 |
+
return scores
|
125 |
+
|
126 |
+
|
127 |
+
# speaking probe
|
128 |
+
def speaking_probe(model, model_params, tokenizer, prompt, *neurons,
|
129 |
+
num_generations=1, layer_range=None, bad_words_ids=[], output_neurons=False,
|
130 |
+
return_outputs=False, logits_processor=LogitsProcessorList([]), **kwargs):
|
131 |
+
num_non_neuron_tokens = len(tokenizer)
|
132 |
+
tokenizer_with_neurons = deepcopy(tokenizer)
|
133 |
+
has_extra_neurons = len(neurons) > 0
|
134 |
+
if has_extra_neurons:
|
135 |
+
tokenizer_with_neurons.add_tokens([f" <neuron{i+1 if i > 0 else ''}>" for i in range(len(neurons))])
|
136 |
+
model.resize_token_embeddings(len(tokenizer_with_neurons))
|
137 |
+
model.transformer.wte.weight.data[-len(neurons):] = torch.stack(neurons, dim=0)
|
138 |
+
|
139 |
+
logits_processor = deepcopy(logits_processor)
|
140 |
+
|
141 |
+
if not output_neurons:
|
142 |
+
logits_processor.append(NeuronTokenBan(num_non_neuron_tokens))
|
143 |
+
|
144 |
+
if layer_range is not None:
|
145 |
+
num_layers = model_params.num_layers
|
146 |
+
min_layer, max_layer = layer_range
|
147 |
+
bad_words_ids = deepcopy(bad_words_ids)
|
148 |
+
bad_words_ids.extend([[encode(f" <param_{i}_{j}>", tokenizer)]
|
149 |
+
for j in range(model_params.d_int)
|
150 |
+
for i in [*range(min_layer), *range(max_layer+1, num_layers)]])
|
151 |
+
if len(bad_words_ids) == 0:
|
152 |
+
bad_words_ids = None
|
153 |
+
|
154 |
+
print(prompt)
|
155 |
+
input_ids = tokenizer_with_neurons.encode(prompt, return_tensors='pt').to(model.device)
|
156 |
+
input_ids = torch.cat([deepcopy(input_ids) for _ in range(num_generations)], dim=0)
|
157 |
+
outputs = model.generate(input_ids, pad_token_id=model.config.eos_token_id,
|
158 |
+
logits_processor=logits_processor,
|
159 |
+
bad_words_ids=bad_words_ids,
|
160 |
+
return_dict_in_generate=True,
|
161 |
+
**kwargs)
|
162 |
+
|
163 |
+
decoded = tokenizer_with_neurons.batch_decode(outputs.sequences, skip_special_tokens=True)
|
164 |
+
|
165 |
+
for i in range(len(decoded)):
|
166 |
+
print("\n\ngenerate:", decoded[i])
|
167 |
+
|
168 |
+
if has_extra_neurons:
|
169 |
+
model.resize_token_embeddings(num_non_neuron_tokens)
|
170 |
+
model.transformer.wte.weight.data = model.transformer.wte.weight.data[:num_non_neuron_tokens]
|
171 |
+
|
172 |
+
if return_outputs:
|
173 |
+
return outputs
|
174 |
+
|
175 |
+
|
176 |
+
# main
|
177 |
+
if __name__ == "__main__":
|
178 |
+
parser = ArgumentParser()
|
179 |
+
parser.add_argument('-p', '--prompt', type=str, default=None)
|
180 |
+
parser.add_argument('--model', type=str, default='gpt2-large')
|
181 |
+
parser.add_argument('--neuron', type=str, default=None)
|
182 |
+
parser.add_argument('--device', type=str, default='cuda')
|
183 |
+
parser.add_argument('--prompt_file', type=str, default=None)
|
184 |
+
parser.add_argument('--no_sample', action='store_true')
|
185 |
+
parser.add_argument('--num_beams', type=int, default=3)
|
186 |
+
parser.add_argument('--num_generations', type=int, default=1)
|
187 |
+
parser.add_argument('--min_length', type=int, default=20)
|
188 |
+
parser.add_argument('--top_p', type=float, default=None)
|
189 |
+
parser.add_argument('--top_k', type=int, default=None)
|
190 |
+
parser.add_argument('--max_length', type=int, default=100)
|
191 |
+
parser.add_argument('--max_new_tokens', type=int, default=None)
|
192 |
+
parser.add_argument('--repetition_penalty', type=float, default=2.)
|
193 |
+
|
194 |
+
args = parser.parse_args()
|
195 |
+
# TODO: first make them mutually exclusive
|
196 |
+
if args.max_new_tokens is not None:
|
197 |
+
args.max_length = None
|
198 |
+
|
199 |
+
|
200 |
+
print("loading model and tokenizer...")
|
201 |
+
tokenizer = AutoTokenizer.from_pretrained(args.model)
|
202 |
+
tokenizer.pad_token = tokenizer.eos_token
|
203 |
+
model = AutoModelForCausalLM.from_pretrained(args.model)
|
204 |
+
model_params = extract_gpt_parameters(model)
|
205 |
+
prompt = args.prompt or read_and_go(args.prompt_file)
|
206 |
+
device = args.device
|
207 |
+
model = model.to(device)
|
208 |
+
|
209 |
+
i1, i2 = map(lambda x: int(x.strip()), args.neuron.split(','))
|
210 |
+
neuron = model_params.K_heads[i1, i2]
|
211 |
+
neurons = [neuron]
|
212 |
+
|
213 |
+
speaking_probe(model, model_params, tokenizer, prompt, *neurons,
|
214 |
+
num_generations=args.num_generations,
|
215 |
+
repetition_penalty=args.repetition_penalty,
|
216 |
+
num_beams=args.num_beams, top_p=args.top_p, top_k=args.top_k,
|
217 |
+
min_length=args.min_length, do_sample=not args.no_sample,
|
218 |
+
max_length=args.max_length, max_new_tokens=args.max_new_tokens)
|