danishjameel003 commited on
Commit
5693de2
·
verified ·
1 Parent(s): 13977ca

Delete WRONG_Question.txt

Browse files
Files changed (1) hide show
  1. WRONG_Question.txt +0 -130
WRONG_Question.txt DELETED
@@ -1,130 +0,0 @@
1
- # Importing dependencies
2
- from dotenv import load_dotenv
3
- import streamlit as st
4
- from PyPDF2 import PdfReader
5
- from langchain.text_splitter import CharacterTextSplitter
6
- from langchain.embeddings import HuggingFaceEmbeddings
7
- from langchain.vectorstores import FAISS
8
- from langchain.prompts import PromptTemplate
9
- from langchain.memory import ConversationBufferMemory
10
- from langchain.chains import ConversationalRetrievalChain
11
- from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
12
- from htmlTemplates import css, bot_template, user_template
13
-
14
- # Load environment variables
15
- load_dotenv()
16
-
17
- # Creating custom template to guide LLM model
18
- custom_template = """Given the following conversation and a follow-up question, rephrase the follow-up question to be a standalone question, in its original language.
19
- Chat History:
20
- {chat_history}
21
- Follow Up Input: {question}
22
- Standalone question:"""
23
-
24
- CUSTOM_QUESTION_PROMPT = PromptTemplate.from_template(custom_template)
25
-
26
- # Extracting text from PDF
27
- def get_pdf_text(docs):
28
- text = ""
29
- for pdf in docs:
30
- pdf_reader = PdfReader(pdf)
31
- for page in pdf_reader.pages:
32
- text += page.extract_text()
33
- return text
34
-
35
- # Converting text to chunks
36
- def get_chunks(raw_text):
37
- text_splitter = CharacterTextSplitter(
38
- separator="\n",
39
- chunk_size=1000,
40
- chunk_overlap=200,
41
- length_function=len
42
- )
43
- chunks = text_splitter.split_text(raw_text)
44
- return chunks
45
-
46
- # Using Hugging Face embeddings model and FAISS to create vectorstore
47
- def get_vectorstore(chunks):
48
- embeddings = HuggingFaceEmbeddings(
49
- model_name="sentence-transformers/all-MiniLM-L6-v2",
50
- model_kwargs={'device': 'cpu'}
51
- )
52
- vectorstore = FAISS.from_texts(texts=chunks, embedding=embeddings)
53
- return vectorstore
54
-
55
- # Generating conversation chain
56
- def get_conversationchain(vectorstore):
57
- # Use a Hugging Face model for question-answering
58
- model_name = "distilbert-base-uncased-distilled-squad" # Pretrained QA model
59
- qa_pipeline = pipeline("question-answering", model=model_name, tokenizer=model_name)
60
-
61
- def qa_function(question, context):
62
- response = qa_pipeline(question=question, context=context)
63
- return response['answer']
64
-
65
- memory = ConversationBufferMemory(
66
- memory_key='chat_history',
67
- return_messages=True,
68
- output_key='answer'
69
- )
70
-
71
- def conversation_chain(inputs):
72
- question = inputs['question']
73
- # Extract text content from Document objects
74
- documents = vectorstore.similarity_search(question, k=5)
75
- if not documents:
76
- answer = "Sorry, I couldn't find relevant information in the document. Please ask a question related to the document."
77
- memory.save_context({"user_input": question}, {"answer": answer})
78
- return {"chat_history": memory.chat_memory.messages, "answer": answer}
79
-
80
- context = "\n".join([doc.page_content for doc in documents]) # Extract `page_content` from each Document
81
- answer = qa_function(question, context)
82
- memory.save_context({"user_input": question}, {"answer": answer})
83
- return {"chat_history": memory.chat_memory.messages, "answer": answer}
84
-
85
- return conversation_chain
86
-
87
- # Generating response from user queries and displaying them accordingly
88
- def handle_question(question):
89
- response = st.session_state.conversation({'question': question})
90
- st.session_state.chat_history = response["chat_history"]
91
- for i, msg in enumerate(st.session_state.chat_history):
92
- if i % 2 == 0:
93
- st.write(user_template.replace("{{MSG}}", msg.content), unsafe_allow_html=True)
94
- else:
95
- st.write(bot_template.replace("{{MSG}}", msg.content), unsafe_allow_html=True)
96
-
97
- def main():
98
- st.set_page_config(page_title="Chat with multiple PDFs", page_icon=":books:")
99
- st.write(css, unsafe_allow_html=True)
100
-
101
- if "conversation" not in st.session_state:
102
- st.session_state.conversation = None
103
-
104
- if "chat_history" not in st.session_state:
105
- st.session_state.chat_history = None
106
-
107
- st.header("CSS Edge - Intelligent Document Chatbot :books:")
108
- question = st.text_input("Ask a question from your document:")
109
- if question:
110
- handle_question(question)
111
-
112
- with st.sidebar:
113
- st.subheader("Your documents")
114
- docs = st.file_uploader("Upload your PDF here and click on 'Process'", accept_multiple_files=True)
115
- if st.button("Process"):
116
- with st.spinner("Processing..."):
117
- # Get the PDF text
118
- raw_text = get_pdf_text(docs)
119
-
120
- # Get the text chunks
121
- text_chunks = get_chunks(raw_text)
122
-
123
- # Create vectorstore
124
- vectorstore = get_vectorstore(text_chunks)
125
-
126
- # Create conversation chain
127
- st.session_state.conversation = get_conversationchain(vectorstore)
128
-
129
- if __name__ == '__main__':
130
- main()