File size: 756 Bytes
08c7df0
fef0bcc
08c7df0
fef0bcc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08c7df0
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
import gradio as gr
from transformers import pipeline

pipeline = pipeline("text-classification", model="bhadresh-savani/bert-base-uncased-emotion", return_all_scores=True)

def predict(input_text):
  preds = pipeline(input_text)
  pred= preds[0]
  res = {"Sadness 😭": pred[0]["score"],
         "Joy πŸ˜‚": pred[1]["score"],
         "Love 😍": pred[2]["score"],
         "Anger 😠": pred[3]["score"],
         "Fear 😨": pred[4]["score"],
         "Surprise 😲": pred[5]["score"],
        }
  return res

iface = gr.Interface(fn = predict, 
                     inputs = "text", 
                     outputs = gr.outputs.Label(num_top_classes=None, type="auto", label=None),
                     title = 'Sentiment Analysis')

iface.launch()