Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,71 +1,68 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
from PIL import Image
|
3 |
-
import base64
|
4 |
-
import io
|
5 |
-
import numpy as np
|
6 |
-
from typing import List
|
7 |
-
from main import segmenter # Import the segmenter instance
|
8 |
-
|
9 |
-
def process_image(image: Image.Image, objects_text: str) -> dict:
|
10 |
-
"""Process image and return results"""
|
11 |
-
try:
|
12 |
-
# Parse objects
|
13 |
-
objects = [obj.strip() for obj in objects_text.split('.') if obj.strip()]
|
14 |
-
|
15 |
-
# Use the segmenter to process the image
|
16 |
-
results = segmenter.segment_objects(image, objects)
|
17 |
-
|
18 |
-
# Create visualization of results
|
19 |
-
# For now, just returning the original image
|
20 |
-
buffered = io.BytesIO()
|
21 |
-
image.save(buffered, format="PNG")
|
22 |
-
img_str = base64.b64encode(buffered.getvalue()).decode()
|
23 |
-
|
24 |
-
# Format results for response
|
25 |
-
return {
|
26 |
-
"success": True,
|
27 |
-
"message": f"Processed image with objects: {objects}",
|
28 |
-
"image": img_str,
|
29 |
-
"results": [
|
30 |
-
{
|
31 |
-
"label": r.label,
|
32 |
-
"confidence": float(r.confidence),
|
33 |
-
"bounding_box": r.bounding_box
|
34 |
-
}
|
35 |
-
for r in results
|
36 |
-
]
|
37 |
-
}
|
38 |
-
except Exception as e:
|
39 |
-
return {
|
40 |
-
"success": False,
|
41 |
-
"message": str(e),
|
42 |
-
"image": None,
|
43 |
-
"results": []
|
44 |
-
}
|
45 |
-
|
46 |
-
# Create Gradio interface with API mode enabled
|
47 |
-
demo = gr.Interface(
|
48 |
-
fn=process_image,
|
49 |
-
inputs=[
|
50 |
-
gr.Image(type="pil", label="Input Image"),
|
51 |
-
gr.Textbox(label="Objects (separate with dots)", placeholder="cat. dog. chair")
|
52 |
-
],
|
53 |
-
outputs=gr.JSON(label="API Response"),
|
54 |
-
title="Zero Shot Segmentation",
|
55 |
-
description="Upload an image and specify objects to detect.",
|
56 |
-
allow_flagging="never"
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
)
|
61 |
-
|
62 |
-
|
63 |
-
demo.
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
server_name="0.0.0.0",
|
69 |
-
server_port=7860,
|
70 |
-
show_api=True
|
71 |
)
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from PIL import Image
|
3 |
+
import base64
|
4 |
+
import io
|
5 |
+
import numpy as np
|
6 |
+
from typing import List
|
7 |
+
from main import segmenter # Import the segmenter instance
|
8 |
+
|
9 |
+
def process_image(image: Image.Image, objects_text: str) -> dict:
|
10 |
+
"""Process image and return results"""
|
11 |
+
try:
|
12 |
+
# Parse objects
|
13 |
+
objects = [obj.strip() for obj in objects_text.split('.') if obj.strip()]
|
14 |
+
|
15 |
+
# Use the segmenter to process the image
|
16 |
+
results = segmenter.segment_objects(image, objects)
|
17 |
+
|
18 |
+
# Create visualization of results
|
19 |
+
# For now, just returning the original image
|
20 |
+
buffered = io.BytesIO()
|
21 |
+
image.save(buffered, format="PNG")
|
22 |
+
img_str = base64.b64encode(buffered.getvalue()).decode()
|
23 |
+
|
24 |
+
# Format results for response
|
25 |
+
return {
|
26 |
+
"success": True,
|
27 |
+
"message": f"Processed image with objects: {objects}",
|
28 |
+
"image": img_str,
|
29 |
+
"results": [
|
30 |
+
{
|
31 |
+
"label": r.label,
|
32 |
+
"confidence": float(r.confidence),
|
33 |
+
"bounding_box": r.bounding_box
|
34 |
+
}
|
35 |
+
for r in results
|
36 |
+
]
|
37 |
+
}
|
38 |
+
except Exception as e:
|
39 |
+
return {
|
40 |
+
"success": False,
|
41 |
+
"message": str(e),
|
42 |
+
"image": None,
|
43 |
+
"results": []
|
44 |
+
}
|
45 |
+
|
46 |
+
# Create Gradio interface with API mode enabled
|
47 |
+
demo = gr.Interface(
|
48 |
+
fn=process_image,
|
49 |
+
inputs=[
|
50 |
+
gr.Image(type="pil", label="Input Image"),
|
51 |
+
gr.Textbox(label="Objects (separate with dots)", placeholder="cat. dog. chair")
|
52 |
+
],
|
53 |
+
outputs=gr.JSON(label="API Response"),
|
54 |
+
title="Zero Shot Segmentation",
|
55 |
+
description="Upload an image and specify objects to detect.",
|
56 |
+
allow_flagging="never"
|
57 |
+
)
|
58 |
+
|
59 |
+
# Enable API access
|
60 |
+
demo.queue()
|
61 |
+
|
62 |
+
if __name__ == "__main__":
|
63 |
+
demo.launch(
|
64 |
+
share=True,
|
65 |
+
server_name="0.0.0.0",
|
66 |
+
server_port=7860,
|
67 |
+
show_api=True
|
|
|
|
|
|
|
68 |
)
|