# Install the necessary packages # pip install accelerate transformers fastapi pydantic torch from transformers import AutoTokenizer, AutoModelForCausalLM import torch from pydantic import BaseModel from fastapi import FastAPI # Import the required library from transformers import pipeline # Initialize the FastAPI app app = FastAPI(docs_url="/") # Define the request model class RequestModel(BaseModel): input: str # Define a greeting endpoint @app.get("/") def greet_json(): return {"message": "working..."} # Define the text generation endpoint @app.post("/generatetext") def get_response(request: RequestModel): # Define the task and model task = "text-generation" model_name = "gpt2" # Define the input text, maximum output length, and the number of return sequences input_text = request.input max_output_length = 50 num_of_return_sequences = 1 # Initialize the text generation pipeline text_generator = pipeline( task, model=model_name ) # Generate text sequences generated_texts = text_generator( input_text, max_length=max_output_length, num_return_sequences=num_of_return_sequences ) # Extract and return the generated text generated_text = generated_texts[0]['generated_text'] return {"generated_text": generated_text} # To run the FastAPI app, use the command: uvicorn :app --reload