danalytix commited on
Commit
8f4f635
β€’
1 Parent(s): 07a9961

Upload 4 files

Browse files
Files changed (4) hide show
  1. Dockerfile +27 -0
  2. README (5).md +11 -0
  3. app.py +52 -0
  4. requirements.txt +6 -0
Dockerfile ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Use the official Python 3.9 image
2
+ FROM python:3.9
3
+
4
+ # Set the working directory to /code
5
+ WORKDIR /code
6
+
7
+ # Copy the current directory contents into the container at /code
8
+ COPY ./requirements.txt /code/requirements.txt
9
+
10
+ # Install requirements.txt
11
+ RUN pip install --no-cache-dir --upgrade -r /code/requirements.txt
12
+
13
+ # Set up a new user named "user" with user ID 1000
14
+ RUN useradd -m -u 1000 user
15
+ # Switch to the "user" user
16
+ USER user
17
+ # Set home to the user's home directory
18
+ ENV HOME=/home/user \
19
+ PATH=/home/user/.local/bin:$PATH
20
+
21
+ # Set the working directory to the user's home directory
22
+ WORKDIR $HOME/app
23
+
24
+ # Copy the current directory contents into the container at $HOME/app setting the owner to the user
25
+ COPY --chown=user . $HOME/app
26
+
27
+ CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
README (5).md ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: text-generation-GPT2
3
+ emoji: 🌍
4
+ colorFrom: blue
5
+ colorTo: red
6
+ sdk: docker
7
+ pinned: false
8
+ license: mit
9
+ ---
10
+
11
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
app.py ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Install the necessary packages
2
+ # pip install accelerate transformers fastapi pydantic torch
3
+
4
+ from transformers import AutoTokenizer, AutoModelForCausalLM
5
+ import torch
6
+ from pydantic import BaseModel
7
+ from fastapi import FastAPI
8
+ # Import the required library
9
+ from transformers import pipeline
10
+
11
+ # Initialize the FastAPI app
12
+ app = FastAPI(docs_url="/")
13
+
14
+ # Define the request model
15
+ class RequestModel(BaseModel):
16
+ input: str
17
+
18
+ # Define a greeting endpoint
19
+ @app.get("/")
20
+ def greet_json():
21
+ return {"message": "working..."}
22
+
23
+ # Define the text generation endpoint
24
+ @app.post("/generatetext")
25
+ def get_response(request: RequestModel):
26
+ # Define the task and model
27
+ task = "text-generation"
28
+ model_name = "gpt2"
29
+
30
+ # Define the input text, maximum output length, and the number of return sequences
31
+ input_text = request.input
32
+ max_output_length = 50
33
+ num_of_return_sequences = 1
34
+
35
+ # Initialize the text generation pipeline
36
+ text_generator = pipeline(
37
+ task,
38
+ model=model_name
39
+ )
40
+
41
+ # Generate text sequences
42
+ generated_texts = text_generator(
43
+ input_text,
44
+ max_length=max_output_length,
45
+ num_return_sequences=num_of_return_sequences
46
+ )
47
+
48
+ # Extract and return the generated text
49
+ generated_text = generated_texts[0]['generated_text']
50
+ return {"generated_text": generated_text}
51
+
52
+ # To run the FastAPI app, use the command: uvicorn <filename>:app --reload
requirements.txt ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ fastapi==0.74.*
2
+ requests==2.27.*
3
+ uvicorn[standard]==0.17.*
4
+ sentencepiece==0.1.*
5
+ torch==1.11.*
6
+ transformers==4.*