import gradio as gr from huggingface_hub import InferenceClient # Function to create InferenceClient dynamically based on model selection def get_client(model_name): return InferenceClient(model_name) def respond( message, history: list[tuple[str, str]], max_tokens, temperature, top_p, model_name, # Added model_name to the function arguments ): # Statically defined system message system_message = "You are a friendly Chatbot." # Create client for the selected model client = get_client(model_name) messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) # Add the latest user message messages.append({"role": "user", "content": message}) # Make the request response = client.chat_completion( messages, max_tokens=max_tokens, temperature=temperature, top_p=top_p, stream=False ) # Extract the full response for chat models full_response = response.choices[0].message["content"] return full_response # Gradio ChatInterface setup with static system message and no Textbox for system message demo = gr.ChatInterface( respond, additional_inputs=[ gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=2.0, value=1.0, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)" ), # Dropdown to select model gr.Dropdown( choices=[ "meta-llama/Meta-Llama-3-8B-Instruct", "mistralai/Mistral-7B-Instruct-v0.3", "HuggingFaceH4/zephyr-7b-beta", "microsoft/Phi-3.5-mini-instruct" ], value="meta-llama/Meta-Llama-3-8B-Instruct", label="Choose Model" ), ], ) if __name__ == "__main__": demo.launch()