Bhushan26 commited on
Commit
ec90435
·
verified ·
1 Parent(s): 57c0ce5

Update main.py

Browse files
Files changed (1) hide show
  1. main.py +32 -61
main.py CHANGED
@@ -1,100 +1,71 @@
1
- from quart import Quart, request, jsonify, send_from_directory
2
- from quart_cors import cors
3
  from gradio_client import Client, file
 
4
  import os
5
  import traceback
6
  import shutil
7
  import base64
8
  import asyncio
9
- import aiofiles
10
 
11
- app = Quart(__name__)
12
- cors(app)
13
 
14
  client = Client("kadirnar/IDM-VTON")
15
 
16
- # Directory to save uploaded and processed files
17
  UPLOAD_FOLDER = 'static/uploads'
18
  RESULT_FOLDER = 'static/results'
19
- if not os.path.exists(UPLOAD_FOLDER):
20
- os.makedirs(UPLOAD_FOLDER)
21
- if not os.path.exists(RESULT_FOLDER):
22
- os.makedirs(RESULT_FOLDER)
23
-
24
  app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
25
  app.config['RESULT_FOLDER'] = RESULT_FOLDER
26
 
27
- @app.route('/')
28
- async def home():
29
- return {"wearon": "wearon model is running!"}
30
-
31
  @app.route('/process', methods=['POST'])
32
  async def predict():
33
  try:
34
- # Get the product image URL from the request
35
- form = await request.form
36
- product_image_url = form.get('product_image_url')
37
-
38
- # Handle the uploaded model image
39
  if 'model_image' not in request.files:
40
  return jsonify(error='No model image file provided'), 400
41
-
42
- model_image = await request.files['model_image']
43
  if model_image.filename == '':
44
  return jsonify(error='No selected file'), 400
45
-
46
- # Save the uploaded file to the upload directory
47
  filename = os.path.join(app.config['UPLOAD_FOLDER'], model_image.filename)
48
- await model_image.save(filename)
49
-
50
  base_path = os.getcwd()
51
  full_filename = os.path.normpath(os.path.join(base_path, filename))
52
-
53
- print("Product image =", product_image_url)
54
- print("Model image =", full_filename)
55
-
56
- # Perform prediction
57
- try:
58
- result = await asyncio.to_thread(client.predict,
59
- dict={"background": file(full_filename), "layers": [], "composite": None},
60
- garm_img=file(product_image_url),
61
- garment_des="Hello!!",
62
- is_checked=True,
63
- is_checked_crop=False,
64
- denoise_steps=30,
65
- seed=42,
66
- api_name="/tryon"
67
- )
68
- except Exception as e:
69
- traceback.print_exc()
70
- raise
71
-
72
  print(result)
73
- # Extract the path of the first output image
74
  output_image_path = result[0]
75
-
76
- # Copy the output image to the RESULT_FOLDER
77
  output_image_filename = os.path.basename(output_image_path)
78
  local_output_path = os.path.join(app.config['RESULT_FOLDER'], output_image_filename)
79
- await asyncio.to_thread(shutil.copy, output_image_path, local_output_path)
80
-
81
- # Remove the uploaded file after processing
82
  os.remove(filename)
83
-
84
- # Encode the output image in base64
85
- async with aiofiles.open(local_output_path, "rb") as image_file:
86
- encoded_image = base64.b64encode(await image_file.read()).decode('utf-8')
87
-
88
- # Return the output image in JSON format
89
  return jsonify(image=encoded_image), 200
90
-
91
  except Exception as e:
92
  traceback.print_exc()
93
  return jsonify(error=str(e)), 500
94
 
95
  @app.route('/uploads/<filename>')
96
- async def uploaded_file(filename):
97
- return await send_from_directory(app.config['UPLOAD_FOLDER'], filename)
98
 
99
  if __name__ == '__main__':
100
  app.run(host='0.0.0.0', port=5000)
 
1
+ from flask import Flask, request, jsonify, send_from_directory
 
2
  from gradio_client import Client, file
3
+ from flask_cors import CORS
4
  import os
5
  import traceback
6
  import shutil
7
  import base64
8
  import asyncio
 
9
 
10
+ app = Flask(__name__)
11
+ CORS(app)
12
 
13
  client = Client("kadirnar/IDM-VTON")
14
 
 
15
  UPLOAD_FOLDER = 'static/uploads'
16
  RESULT_FOLDER = 'static/results'
17
+ os.makedirs(UPLOAD_FOLDER, exist_ok=True)
18
+ os.makedirs(RESULT_FOLDER, exist_ok=True)
 
 
 
19
  app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
20
  app.config['RESULT_FOLDER'] = RESULT_FOLDER
21
 
 
 
 
 
22
  @app.route('/process', methods=['POST'])
23
  async def predict():
24
  try:
25
+ product_image_url = request.form.get('product_image_url')
26
+
 
 
 
27
  if 'model_image' not in request.files:
28
  return jsonify(error='No model image file provided'), 400
29
+
30
+ model_image = request.files['model_image']
31
  if model_image.filename == '':
32
  return jsonify(error='No selected file'), 400
33
+
 
34
  filename = os.path.join(app.config['UPLOAD_FOLDER'], model_image.filename)
35
+ model_image.save(filename)
36
+
37
  base_path = os.getcwd()
38
  full_filename = os.path.normpath(os.path.join(base_path, filename))
39
+
40
+ print("Product image = ", product_image_url)
41
+ print("Model image = ", full_filename)
42
+
43
+ loop = asyncio.get_event_loop()
44
+ result = await loop.run_in_executor(None, client.predict, {
45
+ "background": file(full_filename), "layers": [], "composite": None
46
+ }, file(product_image_url), "Hello!!", True, False, 30, 42, "/tryon")
47
+
 
 
 
 
 
 
 
 
 
 
 
48
  print(result)
 
49
  output_image_path = result[0]
50
+
 
51
  output_image_filename = os.path.basename(output_image_path)
52
  local_output_path = os.path.join(app.config['RESULT_FOLDER'], output_image_filename)
53
+ shutil.copy(output_image_path, local_output_path)
54
+
 
55
  os.remove(filename)
56
+
57
+ with open(local_output_path, "rb") as image_file:
58
+ encoded_image = base64.b64encode(image_file.read()).decode('utf-8')
59
+
 
 
60
  return jsonify(image=encoded_image), 200
61
+
62
  except Exception as e:
63
  traceback.print_exc()
64
  return jsonify(error=str(e)), 500
65
 
66
  @app.route('/uploads/<filename>')
67
+ def uploaded_file(filename):
68
+ return send_from_directory(app.config['UPLOAD_FOLDER'], filename)
69
 
70
  if __name__ == '__main__':
71
  app.run(host='0.0.0.0', port=5000)