Bhushan26 commited on
Commit
b89e93c
1 Parent(s): 09392c6

Update main.py

Browse files
Files changed (1) hide show
  1. main.py +12 -11
main.py CHANGED
@@ -1,7 +1,8 @@
1
  from fastapi import FastAPI, UploadFile, Form, File, HTTPException
2
- from fastapi.responses import JSONResponse
3
  from fastapi.middleware.cors import CORSMiddleware
4
  from gradio_client import Client, file
 
5
  import os
6
  import shutil
7
  import base64
@@ -29,8 +30,7 @@ os.makedirs(RESULT_FOLDER, exist_ok=True)
29
 
30
  @app.post("/")
31
  async def hello():
32
- return {"Wearon":"wearon model is running"}
33
-
34
 
35
  @app.post("/process")
36
  async def predict(product_image_url: str = Form(...), model_image: UploadFile = File(...)):
@@ -40,18 +40,19 @@ async def predict(product_image_url: str = Form(...), model_image: UploadFile =
40
 
41
  # Save the uploaded file to the upload directory
42
  filename = os.path.join(UPLOAD_FOLDER, model_image.filename)
43
- with open(filename, "wb") as buffer:
44
- shutil.copyfileobj(model_image.file, buffer)
 
45
 
46
  base_path = os.getcwd()
47
  full_filename = os.path.normpath(os.path.join(base_path, filename))
48
 
49
- print("Product image = ", product_image_url)
50
- print("Model image = ", full_filename)
51
 
52
  # Perform prediction
53
  try:
54
- result = await client.predict(
55
  dict={"background": file(full_filename), "layers": [], "composite": None},
56
  garm_img=file(product_image_url),
57
  garment_des="Hello!!",
@@ -78,8 +79,8 @@ async def predict(product_image_url: str = Form(...), model_image: UploadFile =
78
  os.remove(filename)
79
 
80
  # Encode the output image in base64
81
- with open(local_output_path, "rb") as image_file:
82
- encoded_image = base64.b64encode(image_file.read()).decode('utf-8')
83
 
84
  # Return the output image in JSON format
85
  return JSONResponse(content={"image": encoded_image}, status_code=200)
@@ -94,4 +95,4 @@ async def uploaded_file(filename: str):
94
  if os.path.exists(file_path):
95
  return FileResponse(file_path)
96
  else:
97
- raise HTTPException(status_code=404, detail="File not found")
 
1
  from fastapi import FastAPI, UploadFile, Form, File, HTTPException
2
+ from fastapi.responses import JSONResponse, FileResponse
3
  from fastapi.middleware.cors import CORSMiddleware
4
  from gradio_client import Client, file
5
+ import aiofiles
6
  import os
7
  import shutil
8
  import base64
 
30
 
31
  @app.post("/")
32
  async def hello():
33
+ return {"Wearon": "wearon model is running"}
 
34
 
35
  @app.post("/process")
36
  async def predict(product_image_url: str = Form(...), model_image: UploadFile = File(...)):
 
40
 
41
  # Save the uploaded file to the upload directory
42
  filename = os.path.join(UPLOAD_FOLDER, model_image.filename)
43
+ async with aiofiles.open(filename, "wb") as buffer:
44
+ content = await model_image.read()
45
+ await buffer.write(content)
46
 
47
  base_path = os.getcwd()
48
  full_filename = os.path.normpath(os.path.join(base_path, filename))
49
 
50
+ print("Product image =", product_image_url)
51
+ print("Model image =", full_filename)
52
 
53
  # Perform prediction
54
  try:
55
+ result = client.predict(
56
  dict={"background": file(full_filename), "layers": [], "composite": None},
57
  garm_img=file(product_image_url),
58
  garment_des="Hello!!",
 
79
  os.remove(filename)
80
 
81
  # Encode the output image in base64
82
+ async with aiofiles.open(local_output_path, "rb") as image_file:
83
+ encoded_image = base64.b64encode(await image_file.read()).decode('utf-8')
84
 
85
  # Return the output image in JSON format
86
  return JSONResponse(content={"image": encoded_image}, status_code=200)
 
95
  if os.path.exists(file_path):
96
  return FileResponse(file_path)
97
  else:
98
+ raise HTTPException(status_code=404, detail="File not found")