initial commit
Browse files- app.py +66 -0
- image1.jpg +0 -0
- image10.jpg +0 -0
- image2.jpg +0 -0
- image3.jpg +0 -0
- image4.jpg +0 -0
- image5.jpg +0 -0
- image6.jpg +0 -0
- image7.jpg +0 -0
- image8.jpg +0 -0
- image9.jpg +0 -0
- requirements.txt +6 -0
app.py
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import ViltProcessor, ViltForQuestionAnswering
|
3 |
+
from transformers import AutoProcessor, AutoModelForVisualQuestionAnswering
|
4 |
+
from PIL import Image
|
5 |
+
import torch
|
6 |
+
|
7 |
+
dataset_name = "Multimodal-Fatima/OK-VQA_train"
|
8 |
+
model_name = "microsoft/git-base-vqav2"
|
9 |
+
model_path = "git-base-vqav2"
|
10 |
+
|
11 |
+
questions = ["What can happen the objects shown are thrown on the ground?",
|
12 |
+
"What was the machine beside the bowl used for?",
|
13 |
+
"What kind of cars are in the photo?",
|
14 |
+
"What is the hairstyle of the blond called?",
|
15 |
+
"How old do you have to be in canada to do this?",
|
16 |
+
"Can you guess the place where the man is playing?",
|
17 |
+
"What loony tune character is in this photo?",
|
18 |
+
"Whose birthday is being celebrated?",
|
19 |
+
"Where can that toilet seat be bought?",
|
20 |
+
"What do you call the kind of pants that the man on the right is wearing?"]
|
21 |
+
|
22 |
+
processor = AutoProcessor.from_pretrained(model_path)
|
23 |
+
model = AutoModelForVisualQuestionAnswering.from_pretrained(model_path)
|
24 |
+
|
25 |
+
|
26 |
+
def main(select_exemple_num):
|
27 |
+
selectednum = select_exemple_num
|
28 |
+
exemple_img = f"image{selectednum}.jpg"
|
29 |
+
img = Image.open(exemple_img)
|
30 |
+
question = questions[selectednum - 1]
|
31 |
+
|
32 |
+
encoding = processor(img, question, return_tensors='pt')
|
33 |
+
|
34 |
+
outputs = model(**encoding)
|
35 |
+
logits = outputs.logits
|
36 |
+
|
37 |
+
# ---
|
38 |
+
output_str = 'pridicted : \n'
|
39 |
+
predicted_classes = torch.sigmoid(logits)
|
40 |
+
|
41 |
+
probs, classes = torch.topk(predicted_classes, 5)
|
42 |
+
ans = ''
|
43 |
+
|
44 |
+
for prob, class_idx in zip(probs.squeeze().tolist(), classes.squeeze().tolist()):
|
45 |
+
print(prob, model.config.id2label[class_idx])
|
46 |
+
output_str += str(prob)
|
47 |
+
output_str += " "
|
48 |
+
output_str += model.config.id2label[class_idx]
|
49 |
+
output_str += "\n"
|
50 |
+
if not ans:
|
51 |
+
ans = model.config.id2label[class_idx]
|
52 |
+
|
53 |
+
print(ans)
|
54 |
+
# ---
|
55 |
+
output_str += f"\nso I think it's answer is : \n{ans}"
|
56 |
+
|
57 |
+
return exemple_img, question, output_str
|
58 |
+
|
59 |
+
|
60 |
+
demo = gr.Interface(
|
61 |
+
fn=main,
|
62 |
+
inputs=[gr.Slider(1, len(questions), step=1)],
|
63 |
+
outputs=["image", "text", "text"],
|
64 |
+
)
|
65 |
+
|
66 |
+
demo.launch(share=True)
|
image1.jpg
ADDED
image10.jpg
ADDED
image2.jpg
ADDED
image3.jpg
ADDED
image4.jpg
ADDED
image5.jpg
ADDED
image6.jpg
ADDED
image7.jpg
ADDED
image8.jpg
ADDED
image9.jpg
ADDED
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
transformers
|
3 |
+
tensorflow
|
4 |
+
numpy
|
5 |
+
Image
|
6 |
+
TensorRT
|