# import system libs import os import time import shutil import itertools # import data handling tools import cv2 import numpy as np import pandas as pd import seaborn as sns sns.set_style('darkgrid') import matplotlib.pyplot as plt import gradio as gr # import Deep learning Libraries import tensorflow as tf from tensorflow import keras from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Activation, Dropout, BatchNormalization from tensorflow.keras.models import Model, load_model, Sequential from tensorflow.keras.preprocessing.image import ImageDataGenerator from sklearn.metrics import confusion_matrix, classification_report from sklearn.model_selection import train_test_split from tensorflow.keras.optimizers import Adam, Adamax from tensorflow.keras import regularizers from tensorflow.keras.metrics import categorical_crossentropy from tensorflow.keras.utils import to_categorical from PIL import Image from sklearn.model_selection import train_test_split # Ignore Warnings import warnings warnings.filterwarnings("ignore") print ('modules loaded') #---Training----------------------------- # ! pip install -q kaggle # from google.colab import files # files.upload() # ! mkdir ~/.kaggle # ! cp kaggle.json ~/.kaggle/ # ! chmod 600 ~/.kaggle/kaggle.json # ! kaggle datasets list # !kaggle datasets download -d kmader/skin-cancer-mnist-ham10000 # ! mkdir kaggle # ! unzip skin-cancer-mnist-ham10000.zip -d kaggle # data_dir = '/content/kaggle/hmnist_28_28_RGB.csv' # data = pd.read_csv(data_dir) # print(data.shape) # data.head() # Label = data["label"] # Data = data.drop(columns=["label"]) # print(data.shape) # Data.head() # from imblearn.over_sampling import RandomOverSampler # oversample = RandomOverSampler() # Data, Label = oversample.fit_resample(Data, Label) # print(Data.shape) # Data = np.array(Data).reshape(-1,28, 28,3) # print('Shape of Data :', Data.shape) # Label = np.array(Label) # Label # classes = {4: ('nv', ' melanocytic nevi'), # 6: ('mel', 'melanoma'), # 2 :('bkl', 'benign keratosis-like lesions'), # 1:('bcc' , ' basal cell carcinoma'), # 5: ('vasc', ' pyogenic granulomas and hemorrhage'), # 0: ('akiec', 'Actinic keratoses and intraepithelial carcinomae'), # 3: ('df', 'dermatofibroma')} # X_train , X_test , y_train , y_test = train_test_split(Data , Label , test_size = 0.25 , random_state = 49) # print(f'X_train shape: {X_train.shape}\nX_test shape: {X_test.shape}') # print(f'y_train shape: {y_train.shape}\ny_test shape: {y_test.shape}') # y_train = to_categorical(y_train) # y_test = to_categorical(y_test) # datagen = ImageDataGenerator(rescale=(1./255) # ,rotation_range=10 # ,zoom_range = 0.1 # ,width_shift_range=0.1 # ,height_shift_range=0.1) # testgen = ImageDataGenerator(rescale=(1./255)) # from keras.callbacks import ReduceLROnPlateau # learning_rate_reduction = ReduceLROnPlateau(monitor='val_accuracy' # , patience = 2 # , verbose=1 # ,factor=0.5 # , min_lr=0.00001) # model = keras.models.Sequential() # # Create Model Structure # model.add(keras.layers.Input(shape=[28, 28, 3])) # model.add(keras.layers.Conv2D(32, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')) # model.add(keras.layers.MaxPooling2D()) # model.add(keras.layers.BatchNormalization()) # model.add(keras.layers.Conv2D(64, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')) # model.add(keras.layers.Conv2D(64, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')) # model.add(keras.layers.MaxPooling2D()) # model.add(keras.layers.BatchNormalization()) # model.add(keras.layers.Conv2D(128, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')) # model.add(keras.layers.Conv2D(128, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')) # model.add(keras.layers.MaxPooling2D()) # model.add(keras.layers.BatchNormalization()) # model.add(keras.layers.Conv2D(256, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')) # model.add(keras.layers.Conv2D(256, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')) # model.add(keras.layers.MaxPooling2D()) # model.add(keras.layers.Flatten()) # model.add(keras.layers.Dropout(rate=0.2)) # model.add(keras.layers.Dense(units=256, activation='relu', kernel_initializer='he_normal')) # model.add(keras.layers.BatchNormalization()) # model.add(keras.layers.Dense(units=128, activation='relu', kernel_initializer='he_normal')) # model.add(keras.layers.BatchNormalization()) # model.add(keras.layers.Dense(units=64, activation='relu', kernel_initializer='he_normal')) # model.add(keras.layers.BatchNormalization()) # model.add(keras.layers.Dense(units=32, activation='relu', kernel_initializer='he_normal', kernel_regularizer=keras.regularizers.L1L2())) # model.add(keras.layers.BatchNormalization()) # model.add(keras.layers.Dense(units=7, activation='softmax', kernel_initializer='glorot_uniform', name='classifier')) # model.compile(Adamax(learning_rate= 0.001), loss= 'categorical_crossentropy', metrics= ['accuracy']) # model.summary() # history = model.fit(X_train , # y_train , # epochs=25 , # batch_size=128, # validation_data=(X_test , y_test) , # callbacks=[learning_rate_reduction]) # def plot_training(hist): # tr_acc = hist.history['accuracy'] # tr_loss = hist.history['loss'] # val_acc = hist.history['val_accuracy'] # val_loss = hist.history['val_loss'] # index_loss = np.argmin(val_loss) # val_lowest = val_loss[index_loss] # index_acc = np.argmax(val_acc) # acc_highest = val_acc[index_acc] # plt.figure(figsize= (20, 8)) # plt.style.use('fivethirtyeight') # Epochs = [i+1 for i in range(len(tr_acc))] # loss_label = f'best epoch= {str(index_loss + 1)}' # acc_label = f'best epoch= {str(index_acc + 1)}' # plt.subplot(1, 2, 1) # plt.plot(Epochs, tr_loss, 'r', label= 'Training loss') # plt.plot(Epochs, val_loss, 'g', label= 'Validation loss') # plt.scatter(index_loss + 1, val_lowest, s= 150, c= 'blue', label= loss_label) # plt.title('Training and Validation Loss') # plt.xlabel('Epochs') # plt.ylabel('Loss') # plt.legend() # plt.subplot(1, 2, 2) # plt.plot(Epochs, tr_acc, 'r', label= 'Training Accuracy') # plt.plot(Epochs, val_acc, 'g', label= 'Validation Accuracy') # plt.scatter(index_acc + 1 , acc_highest, s= 150, c= 'blue', label= acc_label) # plt.title('Training and Validation Accuracy') # plt.xlabel('Epochs') # plt.ylabel('Accuracy') # plt.legend() # plt.tight_layout # plt.show() # plot_training(history) # train_score = model.evaluate(X_train, y_train, verbose= 1) # test_score = model.evaluate(X_test, y_test, verbose= 1) # print("Train Loss: ", train_score[0]) # print("Train Accuracy: ", train_score[1]) # print('-' * 20) # print("Test Loss: ", test_score[0]) # print("Test Accuracy: ", test_score[1]) # y_true = np.array(y_test) # y_pred = model.predict(X_test) # y_pred = np.argmax(y_pred , axis=1) # y_true = np.argmax(y_true , axis=1) # classes_labels = [] # for key in classes.keys(): # classes_labels.append(key) # print(classes_labels) # # Confusion matrix # cm = cm = confusion_matrix(y_true, y_pred, labels=classes_labels) # plt.figure(figsize= (10, 10)) # plt.imshow(cm, interpolation= 'nearest', cmap= plt.cm.Blues) # plt.title('Confusion Matrix') # plt.colorbar() # tick_marks = np.arange(len(classes)) # plt.xticks(tick_marks, classes, rotation= 45) # plt.yticks(tick_marks, classes) # thresh = cm.max() / 2. # for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])): # plt.text(j, i, cm[i, j], horizontalalignment= 'center', color= 'white' if cm[i, j] > thresh else 'black') # plt.tight_layout() # plt.ylabel('True Label') # plt.xlabel('Predicted Label') # plt.show() # #Save the model # model.save('skin_cancer_model.h5') # converter = tf.lite.TFLiteConverter.from_keras_model(model) # tflite_model = converter.convert() # print("model converted") # # Save the model. # with open('skin_cancer_model.tflite', 'wb') as f: # f.write(tflite_model) #Training End------------------------------------------ skin_classes = {4: ('nv', ' melanocytic nevi'), 6: ('mel', 'melanoma'), 2 :('bkl', 'benign keratosis-like lesions'), 1:('bcc' , ' basal cell carcinoma'), 5: ('vasc', ' pyogenic granulomas and hemorrhage'), 0: ('akiec', 'Actinic keratoses and intraepithelial carcinomae'), 3: ('df', 'dermatofibroma')} #Use saved model loaded_model = tf.keras.models.load_model('skin_cancer_model.h5', compile=False) loaded_model.compile(Adamax(learning_rate= 0.001), loss= 'categorical_crossentropy', metrics= ['accuracy']) def predict_digit(image): if image is not None: #Use saved model loaded_model = tf.keras.models.load_model('skin_cancer_model.h5', compile=False) loaded_model.compile(Adamax(learning_rate= 0.001), loss= 'categorical_crossentropy', metrics= ['accuracy']) img = image.resize((28, 28)) img_array = tf.keras.preprocessing.image.img_to_array(img) img_array = tf.expand_dims(img_array, 0) print(img_array) predictions = loaded_model.predict(img_array) print(predictions) #class_labels = [] # data classes score = tf.nn.softmax(predictions[0])*100 print(score) print(skin_classes[np.argmax(score)]) simple = pd.DataFrame( { "skin condition": ["akiec", "bcc", "bkl", "df", "nv", "vasc", "mel"], "probability": score, "full skin condition": [ 'Actinic keratoses', ' basal cell carcinoma', 'benign keratosis-like lesions', 'dermatofibroma', ' melanocytic nevi', ' pyogenic granulomas and hemorrhage', 'melanoma'], } ) predicted_skin_condition=skin_classes[np.argmax(score)][1]+" ("+ skin_classes[np.argmax(score)][0]+")" return predicted_skin_condition, gr.BarPlot( simple, x="skin condition", y="probability", x_title="Skin Condition", y_title="Classification Probabilities", title="Skin Cancer Classification Probability", tooltip=["full skin condition", "probability"], vertical=False, y_lim=[0, 100], color="full skin condition" ) else: simple_empty = pd.DataFrame( { "skin condition": ["akiec", "bcc", "bkl", "df", "nv", "vasc", "mel"], "probability": [0,0,0,0,0,0,0], "full skin condition": [ 'Actinic keratoses', ' basal cell carcinoma', 'benign keratosis-like lesions', 'dermatofibroma', ' melanocytic nevi', ' pyogenic granulomas and hemorrhage', 'melanoma'], } ) return " ", gr.BarPlot( simple_empty, x="skin condition", y="probability", x_title="Digits", y_title="Identification Probabilities", title="Identification Probability", tooltip=["full skin condition", "probability"], vertical=False, y_lim=[0, 100], ) skin_images = [ ("skin_image/mel.jpg",'mel'), ("skin_image/nv3.jpg",'nv'), ("skin_image/bkl.jpg",'bkl'), ("skin_image/df.jpg",'df'), ("skin_image/akiec.jpg",'akiec'), ("skin_image/bcc.jpg",'bcc'), ("skin_image/vasc.jpg",'vasc'), ("skin_image/nv2.jpg",'nv'), ("skin_image/akiec2.jpg",'akiec'), ("skin_image/bkl2.jpg",'bkl'), ("skin_image/nv.jpg",'nv'), ] def image_from_gallary(evt: gr.SelectData): print(evt.index) return skin_images[evt.index][0] css=''' #title_head { text-align: center; font-weight: bold; font-size: 30px; } #name_head{ text-align: center; } ''' with gr.Blocks(css=css) as demo: with gr.Row(): with gr.Column(): gr.Markdown("