from PIL import Image import matplotlib.pyplot as plt import io # COCO classes CLASSES = [ 'N/A', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'N/A', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'N/A', 'backpack', 'umbrella', 'N/A', 'N/A', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket', 'bottle', 'N/A', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', 'N/A', 'dining table', 'N/A', 'N/A', 'toilet', 'N/A', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'N/A', 'book', 'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush' ] COLORS = [ [0.000, 0.447, 0.741], [0.850, 0.325, 0.098], [0.929, 0.694, 0.125], [0.494, 0.184, 0.556], [0.466, 0.674, 0.188], [0.301, 0.745, 0.933], ] # Update JSON dictionary with rounded values and class names def generate_output_json(json_dict): json_dict['scores'] = [round(score, 3) for score in json_dict['scores']] json_dict['boxes'] = [[round(coord, 3) for coord in box] for box in json_dict['boxes']] json_dict['labels'] = [CLASSES[label] for label in json_dict['labels']] return json_dict # Generate matplotlib figure from prediction scores and boxes def generate_output_figure(image_path, predictions, threshold): pil_img = Image.open(image_path) plt.figure(figsize=(16, 10)) plt.imshow(pil_img) ax = plt.gca() colors = COLORS * 100 print("\t Detailed information...") for score, label, box in zip(predictions["scores"], predictions["labels"], predictions["boxes"]): #box = [round(i, 2) for i in box] print( f"\t\t Detected {label} with confidence " f"{score} at location {box}" ) if score > threshold: c = COLORS[hash(label) % len(COLORS)] ax.add_patch( plt.Rectangle((box[0], box[1]), box[2] - box[0], box[3] - box[1], fill=False, color=c, linewidth=3) ) text = f"{label}: {score:0.2f}" ax.text(box[0], box[1], text, fontsize=15, bbox=dict(facecolor="yellow", alpha=0.5)) plt.axis("off") return plt.gcf() # Generate PIL image from matplotlib figure def generate_output_image(output_figure): # Convert matplotlib figure to PIL image #output_figure = plt.gcf() buf = io.BytesIO() output_figure.savefig(buf, bbox_inches="tight") buf.seek(0) output_pil_img = Image.open(buf) return output_pil_img def generate_gradio_outputs(image_path, prediction_dict, threshold): output_json = generate_output_json(prediction_dict) output_figure = generate_output_figure(image_path, output_json, threshold) output_pil_img = generate_output_image(output_figure) return output_json, output_pil_img