Spaces:
Sleeping
Sleeping
""" | |
AWS Lambda function | |
""" | |
import base64 | |
import json | |
import logging | |
from detection import ml_detection, ml_utils | |
logger = logging.getLogger() | |
logger.setLevel(logging.INFO) | |
# Find ML model type based on string request | |
def get_model_type(query_string): | |
"""Find ML model type based on string request""" | |
# Default ml model type | |
if query_string == "": | |
model_type = "facebook/detr-resnet-50" | |
# Assess query string value | |
elif "detr" in query_string: | |
model_type = "facebook/" + query_string | |
elif "yolos" in query_string: | |
model_type = "hustvl/" + query_string | |
else: | |
raise Exception("Incorrect model type.") | |
return model_type | |
# Run detection pipeline: load ML model, perform object detection and return json object | |
def detection_pipeline(model_type, image_bytes): | |
"""detection pipeline: load ML model, perform object detection and return json object""" | |
# Load correct ML model | |
processor, model = ml_detection.load_model(model_type) | |
# Perform object detection | |
results = ml_detection.object_detection(processor, model, image_bytes) | |
# Convert dictionary of tensors to JSON object | |
result_json_dict = ml_utils.convert_tensor_dict_to_json(results) | |
return result_json_dict | |
def lambda_handler(event, context): | |
""" | |
Lambda handler (proxy integration option unchecked on AWS API Gateway) | |
Args: | |
event (dict): The event that triggered the Lambda function. | |
context (LambdaContext): Information about the execution environment. | |
Returns: | |
dict: The response to be returned from the Lambda function. | |
""" | |
# logger.info(f"API event: {event}") | |
try: | |
# Retrieve model type | |
model_query = event.get("model", "") | |
model_type = get_model_type(model_query) | |
logger.info("Model query: %s", model_query) | |
logger.info("Model type: %s", model_type) | |
# Decode the base64-encoded image data from the event | |
image_data = event["body"] | |
if event["isBase64Encoded"]: | |
image_data = base64.b64decode(image_data) | |
# Run detection pipeline | |
result_dict = detection_pipeline(model_type, image_data) | |
logger.info("API Results: %s", str(result_dict)) | |
return { | |
"statusCode": 200, | |
"headers": {"Content-Type": "application/json"}, | |
"body": json.dumps(result_dict), | |
} | |
except Exception as e: | |
logger.info("API Error: %s", str(e)) | |
return { | |
"statusCode": 500, | |
"headers": {"Content-Type": "application/json"}, | |
"body": json.dumps({"error": str(e)}), | |
} | |