Spaces:
Sleeping
Sleeping
from PIL import Image | |
import matplotlib.pyplot as plt | |
import io | |
# COCO classes | |
CLASSES = [ | |
'N/A', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', | |
'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'N/A', | |
'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', | |
'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'N/A', 'backpack', | |
'umbrella', 'N/A', 'N/A', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', | |
'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', | |
'skateboard', 'surfboard', 'tennis racket', 'bottle', 'N/A', 'wine glass', | |
'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', | |
'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', | |
'chair', 'couch', 'potted plant', 'bed', 'N/A', 'dining table', 'N/A', | |
'N/A', 'toilet', 'N/A', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', | |
'cell phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'N/A', | |
'book', 'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', | |
'toothbrush' | |
] | |
COLORS = [ | |
[0.000, 0.447, 0.741], | |
[0.850, 0.325, 0.098], | |
[0.929, 0.694, 0.125], | |
[0.494, 0.184, 0.556], | |
[0.466, 0.674, 0.188], | |
[0.301, 0.745, 0.933], | |
] | |
# Update JSON dictionary with rounded values and class names | |
def generate_output_json(json_dict): | |
json_dict['scores'] = [round(score, 3) for score in json_dict['scores']] | |
json_dict['boxes'] = [[round(coord, 3) for coord in box] for box in json_dict['boxes']] | |
json_dict['labels'] = [CLASSES[label] for label in json_dict['labels']] | |
return json_dict | |
# Generate matplotlib figure from prediction scores and boxes | |
def generate_output_figure(image_path, predictions, threshold): | |
pil_img = Image.open(image_path) | |
plt.figure(figsize=(16, 10)) | |
plt.imshow(pil_img) | |
ax = plt.gca() | |
colors = COLORS * 100 | |
print("\t Detailed information...") | |
for score, label, box in zip(predictions["scores"], predictions["labels"], predictions["boxes"]): | |
#box = [round(i, 2) for i in box] | |
print( | |
f"\t\t Detected {label} with confidence " | |
f"{score} at location {box}" | |
) | |
if score > threshold: | |
c = COLORS[hash(label) % len(COLORS)] | |
ax.add_patch( | |
plt.Rectangle((box[0], box[1]), box[2] - box[0], box[3] - box[1], fill=False, color=c, linewidth=3) | |
) | |
text = f"{label}: {score:0.2f}" | |
ax.text(box[0], box[1], text, fontsize=15, bbox=dict(facecolor="yellow", alpha=0.5)) | |
plt.axis("off") | |
return plt.gcf() | |
# Generate PIL image from matplotlib figure | |
def generate_output_image(output_figure): | |
# Convert matplotlib figure to PIL image | |
#output_figure = plt.gcf() | |
buf = io.BytesIO() | |
output_figure.savefig(buf, bbox_inches="tight") | |
buf.seek(0) | |
output_pil_img = Image.open(buf) | |
return output_pil_img | |
def generate_gradio_outputs(image_path, prediction_dict, threshold): | |
output_json = generate_output_json(prediction_dict) | |
output_figure = generate_output_figure(image_path, output_json, threshold) | |
output_pil_img = generate_output_image(output_figure) | |
return output_json, output_pil_img | |