#!/usr/bin/env python3
#
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang)
#
# See LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# References:
# https://gradio.app/docs/#dropdown
import logging
import os
import time
from datetime import datetime
import gradio as gr
import torch
import torchaudio
from examples import examples
from model import get_pretrained_model, language_to_models, sample_rate
languages = list(language_to_models.keys())
def convert_to_wav(in_filename: str) -> str:
"""Convert the input audio file to a wave file"""
out_filename = in_filename + ".wav"
logging.info(f"Converting '{in_filename}' to '{out_filename}'")
_ = os.system(f"ffmpeg -hide_banner -i '{in_filename}' -ar 16000 '{out_filename}'")
return out_filename
def build_html_output(s: str, style: str = "result_item_success"):
return f"""
"""
def process_uploaded_file(
language: str,
repo_id: str,
decoding_method: str,
num_active_paths: int,
in_filename: str,
):
if in_filename is None or in_filename == "":
return "", build_html_output(
"Please first upload a file and then click "
'the button "submit for recognition"',
"result_item_error",
)
logging.info(f"Processing uploaded file: {in_filename}")
try:
return process(
in_filename=in_filename,
language=language,
repo_id=repo_id,
decoding_method=decoding_method,
num_active_paths=num_active_paths,
)
except Exception as e:
logging.info(str(e))
return "", build_html_output(str(e), "result_item_error")
def process_microphone(
language: str,
repo_id: str,
decoding_method: str,
num_active_paths: int,
in_filename: str,
):
if in_filename is None or in_filename == "":
return "", build_html_output(
"Please first click 'Record from microphone', speak, "
"click 'Stop recording', and then "
"click the button 'submit for recognition'",
"result_item_error",
)
logging.info(f"Processing microphone: {in_filename}")
try:
return process(
in_filename=in_filename,
language=language,
repo_id=repo_id,
decoding_method=decoding_method,
num_active_paths=num_active_paths,
)
except Exception as e:
logging.info(str(e))
return "", build_html_output(str(e), "result_item_error")
@torch.no_grad()
def process(
language: str,
repo_id: str,
decoding_method: str,
num_active_paths: int,
in_filename: str,
):
logging.info(f"language: {language}")
logging.info(f"repo_id: {repo_id}")
logging.info(f"decoding_method: {decoding_method}")
logging.info(f"num_active_paths: {num_active_paths}")
logging.info(f"in_filename: {in_filename}")
filename = convert_to_wav(in_filename)
logging.info(f"filename: {in_filename}")
os.system(f"ffprobe {filename}")
now = datetime.now()
date_time = now.strftime("%Y-%m-%d %H:%M:%S.%f")
logging.info(f"Started at {date_time}")
start = time.time()
recognizer = get_pretrained_model(
repo_id,
decoding_method=decoding_method,
num_active_paths=num_active_paths,
)
s = recognizer.create_stream()
s.accept_wave_file(filename)
recognizer.decode_stream(s)
text = s.result.text
date_time = now.strftime("%Y-%m-%d %H:%M:%S.%f")
end = time.time()
metadata = torchaudio.info(filename)
duration = metadata.num_frames / sample_rate
rtf = (end - start) / duration
logging.info(f"Finished at {date_time} s. Elapsed: {end - start: .3f} s")
info = f"""
Wave duration : {duration: .3f} s
Processing time: {end - start: .3f} s
RTF: {end - start: .3f}/{duration: .3f} = {rtf:.3f}
"""
if rtf > 1:
info += (
"
We are loading the model for the first run. "
"Please run again to measure the real RTF.
"
)
logging.info(info)
logging.info(f"\nrepo_id: {repo_id}\nhyp: {text}")
return text, build_html_output(info)
title = "# Automatic Speech Recognition with Next-gen Kaldi"
description = """
This space shows how to do automatic speech recognition with Next-gen Kaldi.
It is running on CPU within a docker container provided by Hugging Face.
See more information by visiting the following links:
-
-
-
-
If you want to deploy it locally, please see
"""
# css style is copied from
# https://huggingface.co./spaces/alphacep/asr/blob/main/app.py#L113
css = """
.result {display:flex;flex-direction:column}
.result_item {padding:15px;margin-bottom:8px;border-radius:15px;width:100%}
.result_item_success {background-color:mediumaquamarine;color:white;align-self:start}
.result_item_error {background-color:#ff7070;color:white;align-self:start}
"""
def update_model_dropdown(language: str):
if language in language_to_models:
choices = language_to_models[language]
return gr.Dropdown.update(choices=choices, value=choices[0])
raise ValueError(f"Unsupported language: {language}")
demo = gr.Blocks(css=css)
with demo:
gr.Markdown(title)
language_choices = list(language_to_models.keys())
language_radio = gr.Radio(
label="Language",
choices=language_choices,
value=language_choices[0],
)
model_dropdown = gr.Dropdown(
choices=language_to_models[language_choices[0]],
label="Select a model",
value=language_to_models[language_choices[0]][0],
)
language_radio.change(
update_model_dropdown,
inputs=language_radio,
outputs=model_dropdown,
)
decoding_method_radio = gr.Radio(
label="Decoding method",
choices=["greedy_search", "modified_beam_search"],
value="greedy_search",
)
num_active_paths_slider = gr.Slider(
minimum=1,
value=4,
step=1,
label="Number of active paths for modified_beam_search",
)
with gr.Tabs():
with gr.TabItem("Upload from disk"):
uploaded_file = gr.Audio(
source="upload", # Choose between "microphone", "upload"
type="filepath",
optional=False,
label="Upload from disk",
)
upload_button = gr.Button("Submit for recognition")
uploaded_output = gr.Textbox(label="Recognized speech from uploaded file")
uploaded_html_info = gr.HTML(label="Info")
gr.Examples(
examples=examples,
inputs=[
language_radio,
model_dropdown,
decoding_method_radio,
num_active_paths_slider,
uploaded_file,
],
outputs=[uploaded_output, uploaded_html_info],
fn=process_uploaded_file,
)
with gr.TabItem("Record from microphone"):
microphone = gr.Audio(
source="microphone", # Choose between "microphone", "upload"
type="filepath",
optional=False,
label="Record from microphone",
)
record_button = gr.Button("Submit for recognition")
recorded_output = gr.Textbox(label="Recognized speech from recordings")
recorded_html_info = gr.HTML(label="Info")
gr.Examples(
examples=examples,
inputs=[
language_radio,
model_dropdown,
decoding_method_radio,
num_active_paths_slider,
microphone,
],
outputs=[recorded_output, recorded_html_info],
fn=process_microphone,
)
upload_button.click(
process_uploaded_file,
inputs=[
language_radio,
model_dropdown,
decoding_method_radio,
num_active_paths_slider,
uploaded_file,
],
outputs=[uploaded_output, uploaded_html_info],
)
record_button.click(
process_microphone,
inputs=[
language_radio,
model_dropdown,
decoding_method_radio,
num_active_paths_slider,
microphone,
],
outputs=[recorded_output, recorded_html_info],
)
gr.Markdown(description)
if __name__ == "__main__":
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
logging.basicConfig(format=formatter, level=logging.INFO)
demo.launch()