import gradio as gr import os import time import sys import tempfile import subprocess import requests from urllib.parse import urlparse from pydub import AudioSegment import logging import torch from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline import yt_dlp logging.basicConfig(level=logging.INFO) # Clone and install faster-whisper from GitHub # (we should be able to do this in build.sh in a hf space) try: subprocess.run(["git", "clone", "https://github.com/SYSTRAN/faster-whisper.git"], check=True) subprocess.run(["pip", "install", "-e", "./faster-whisper"], check=True) except subprocess.CalledProcessError as e: print(f"Error during faster-whisper installation: {e}") sys.exit(1) # Add the faster-whisper directory to the Python path sys.path.append("./faster-whisper") from faster_whisper import WhisperModel from faster_whisper.transcribe import BatchedInferencePipeline device = "cuda:0" if torch.cuda.is_available() else "cpu" def download_audio(url, method_choice): parsed_url = urlparse(url) if parsed_url.netloc in ['www.youtube.com', 'youtu.be', 'youtube.com']: return download_youtube_audio(url, method_choice) else: return download_direct_audio(url, method_choice) def download_youtube_audio(url, method_choice): methods = { 'yt-dlp': youtube_dl_method, 'pytube': pytube_method, 'youtube-dl': youtube_dl_classic_method, 'yt-dlp-alt': youtube_dl_alternative_method, 'ffmpeg': ffmpeg_method, 'aria2': aria2_method } method = methods.get(method_choice, youtube_dl_method) try: return method(url) except Exception as e: logging.error(f"Error downloading using {method_choice}: {str(e)}") return None def youtube_dl_method(url): ydl_opts = { 'format': 'bestaudio/best', 'postprocessors': [{ 'key': 'FFmpegExtractAudio', 'preferredcodec': 'mp3', 'preferredquality': '192', }], 'outtmpl': '%(id)s.%(ext)s', } with yt_dlp.YoutubeDL(ydl_opts) as ydl: info = ydl.extract_info(url, download=True) return f"{info['id']}.mp3" def pytube_method(url): from pytube import YouTube yt = YouTube(url) audio_stream = yt.streams.filter(only_audio=True).first() out_file = audio_stream.download() base, ext = os.path.splitext(out_file) new_file = base + '.mp3' os.rename(out_file, new_file) return new_file def youtube_dl_classic_method(url): ydl_opts = { 'format': 'bestaudio/best', 'postprocessors': [{ 'key': 'FFmpegExtractAudio', 'preferredcodec': 'mp3', 'preferredquality': '192', }], 'outtmpl': '%(id)s.%(ext)s', } with yt_dlp.YoutubeDL(ydl_opts) as ydl: info = ydl.extract_info(url, download=True) return f"{info['id']}.mp3" def youtube_dl_alternative_method(url): ydl_opts = { 'format': 'bestaudio/best', 'postprocessors': [{ 'key': 'FFmpegExtractAudio', 'preferredcodec': 'mp3', 'preferredquality': '192', }], 'outtmpl': '%(id)s.%(ext)s', 'no_warnings': True, 'quiet': True, 'no_check_certificate': True, 'prefer_insecure': True, } with yt_dlp.YoutubeDL(ydl_opts) as ydl: info = ydl.extract_info(url, download=True) return f"{info['id']}.mp3" def ffmpeg_method(url): output_file = tempfile.mktemp(suffix='.mp3') command = ['ffmpeg', '-i', url, '-vn', '-acodec', 'libmp3lame', '-q:a', '2', output_file] subprocess.run(command, check=True, capture_output=True) return output_file def aria2_method(url): output_file = tempfile.mktemp(suffix='.mp3') command = ['aria2c', '--split=4', '--max-connection-per-server=4', '--out', output_file, url] subprocess.run(command, check=True, capture_output=True) return output_file def download_direct_audio(url, method_choice): if method_choice == 'wget': return wget_method(url) else: try: response = requests.get(url) if response.status_code == 200: with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as temp_file: temp_file.write(response.content) return temp_file.name else: raise Exception(f"Failed to download audio from {url}") except Exception as e: logging.error(f"Error downloading direct audio: {str(e)}") return None def wget_method(url): output_file = tempfile.mktemp(suffix='.mp3') command = ['wget', '-O', output_file, url] subprocess.run(command, check=True, capture_output=True) return output_file def trim_audio(audio_path, start_time, end_time): audio = AudioSegment.from_file(audio_path) trimmed_audio = audio[start_time*1000:end_time*1000] if end_time else audio[start_time*1000:] trimmed_audio_path = tempfile.mktemp(suffix='.wav') trimmed_audio.export(trimmed_audio_path, format="wav") return trimmed_audio_path def save_transcription(transcription): file_path = tempfile.mktemp(suffix='.txt') with open(file_path, 'w') as f: f.write(transcription) return file_path def get_model_options(pipeline_type): if pipeline_type == "faster-batched": return ["cstr/whisper-large-v3-turbo-int8_float32", "deepdml/faster-whisper-large-v3-turbo-ct2", "Systran/faster-whisper-large-v3", "GalaktischeGurke/primeline-whisper-large-v3-german-ct2"] elif pipeline_type == "faster-sequenced": return ["cstr/whisper-large-v3-turbo-int8_float32", "deepdml/faster-whisper-large-v3-turbo-ct2", "Systran/faster-whisper-large-v3", "GalaktischeGurke/primeline-whisper-large-v3-german-ct2"] elif pipeline_type == "transformers": return ["openai/whisper-large-v3", "openai/whisper-large-v3-turbo", "primeline/whisper-large-v3-german"] else: return [] def update_model_dropdown(pipeline_type): return gr.Dropdown.update(choices=get_model_options(pipeline_type), value=get_model_options(pipeline_type)[0]) def transcribe_audio(input_source, pipeline_type, model_id, dtype, batch_size, download_method, start_time=None, end_time=None, verbose=False): try: if pipeline_type == "faster-batched": model = WhisperModel(model_id, device="auto", compute_type=dtype) pipeline = BatchedInferencePipeline(model=model) elif pipeline_type == "faster-sequenced": model = WhisperModel(model_id) pipeline = model.transcribe elif pipeline_type == "transformers": torch_dtype = torch.float16 if dtype == "float16" else torch.float32 model = AutoModelForSpeechSeq2Seq.from_pretrained( model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True ) model.to(device) processor = AutoProcessor.from_pretrained(model_id) pipeline = pipeline( "automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, chunk_length_s=30, batch_size=batch_size, return_timestamps=True, torch_dtype=torch_dtype, device=device, ) else: raise ValueError("Invalid pipeline type") if isinstance(input_source, str) and (input_source.startswith('http://') or input_source.startswith('https://')): audio_path = download_audio(input_source, download_method) if audio_path.startswith("Error"): yield f"Error: {audio_path}", "", None return else: audio_path = input_source if start_time is not None or end_time is not None: trimmed_audio_path = trim_audio(audio_path, start_time or 0, end_time) audio_path = trimmed_audio_path start_time_perf = time.time() if pipeline_type in ["faster-batched", "faster-sequenced"]: segments, info = pipeline(audio_path, batch_size=batch_size) else: result = pipeline(audio_path) segments = result["chunks"] end_time_perf = time.time() transcription_time = end_time_perf - start_time_perf audio_file_size = os.path.getsize(audio_path) / (1024 * 1024) metrics_output = ( f"Transcription time: {transcription_time:.2f} seconds\n" f"Audio file size: {audio_file_size:.2f} MB\n" ) if verbose: yield metrics_output, "", None transcription = "" for segment in segments: transcription_segment = ( f"[{segment.start:.2f}s -> {segment.end:.2f}s] {segment.text}\n" if pipeline_type in ["faster-batched", "faster-sequenced"] else f"[{segment['timestamp'][0]:.2f}s -> {segment['timestamp'][1]:.2f}s] {segment['text']}\n" ) transcription += transcription_segment if verbose: yield metrics_output, transcription, None transcription_file = save_transcription(transcription) yield metrics_output, transcription, transcription_file except Exception as e: yield f"An error occurred: {str(e)}", "", None finally: if isinstance(input_source, str) and (input_source.startswith('http://') or input_source.startswith('https://')): try: os.remove(audio_path) except: pass if start_time is not None or end_time is not None: try: os.remove(trimmed_audio_path) except: pass iface = gr.Interface( fn=transcribe_audio, inputs=[ gr.Textbox(label="Audio Source (Upload, URL, or YouTube URL)"), gr.Dropdown(choices=["faster-batched", "faster-sequenced", "transformers"], label="Pipeline Type", value="faster-batched"), gr.Dropdown(label="Model", choices=get_model_options("faster-batched"), value=get_model_options("faster-batched")[0]), gr.Dropdown(choices=["int8", "float16", "float32"], label="Data Type", value="int8"), gr.Slider(minimum=1, maximum=32, step=1, value=16, label="Batch Size"), gr.Dropdown(choices=["yt-dlp", "pytube", "youtube-dl", "yt-dlp-alt", "ffmpeg", "aria2", "wget"], label="Download Method", value="yt-dlp"), gr.Number(label="Start Time (seconds)", value=0), gr.Number(label="End Time (seconds)", value=0), gr.Checkbox(label="Verbose Output", value=False) ], outputs=[ gr.Textbox(label="Transcription Metrics and Verbose Messages", lines=10), gr.Textbox(label="Transcription", lines=10), gr.File(label="Download Transcription") ], title="Multi-Pipeline Transcription", description="Transcribe audio using multiple pipelines and models.", examples=[ ["https://www.youtube.com/watch?v=daQ_hqA6HDo", "faster-batched", "cstr/whisper-large-v3-turbo-int8_float32", "int8", 16, "yt-dlp", 0, None, False], ["https://mcdn.podbean.com/mf/web/dir5wty678b6g4vg/HoP_453_-_The_Price_is_Right_-_Law_and_Economics_in_the_Second_Scholastic5yxzh.mp3", "faster-sequenced", "deepdml/faster-whisper-large-v3-turbo-ct2", "float16", 1, "ffmpeg", 0, 300, True], ["path/to/local/audio.mp3", "transformers", "openai/whisper-large-v3", "float16", 16, "yt-dlp", 60, 180, False] ], cache_examples=False, ) pipeline_type_dropdown = iface.inputs[1] model_dropdown = iface.inputs[2] pipeline_type_dropdown.change(update_model_dropdown, inputs=[pipeline_type_dropdown], outputs=[model_dropdown]) iface.launch()