Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -8,9 +8,12 @@ import requests
|
|
8 |
from urllib.parse import urlparse
|
9 |
|
10 |
# Clone and install faster-whisper from GitHub
|
11 |
-
|
12 |
-
subprocess.run(["
|
13 |
-
|
|
|
|
|
|
|
14 |
|
15 |
# Add the faster-whisper directory to the Python path
|
16 |
sys.path.append("./faster-whisper")
|
@@ -19,28 +22,30 @@ from faster_whisper import WhisperModel
|
|
19 |
from faster_whisper.transcribe import BatchedInferencePipeline
|
20 |
import yt_dlp
|
21 |
|
22 |
-
def download_audio(url):
|
23 |
parsed_url = urlparse(url)
|
24 |
if parsed_url.netloc in ['www.youtube.com', 'youtu.be', 'youtube.com']:
|
25 |
-
return download_youtube_audio(url)
|
26 |
else:
|
27 |
-
return download_direct_audio(url)
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
print(f"Method {method.__name__} failed: {str(e)}")
|
42 |
|
43 |
-
|
|
|
|
|
|
|
44 |
|
45 |
def youtube_dl_method(url):
|
46 |
ydl_opts = {
|
@@ -66,6 +71,21 @@ def pytube_method(url):
|
|
66 |
os.rename(out_file, new_file)
|
67 |
return new_file
|
68 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
def youtube_dl_alternative_method(url):
|
70 |
ydl_opts = {
|
71 |
'format': 'bestaudio/best',
|
@@ -79,7 +99,6 @@ def youtube_dl_alternative_method(url):
|
|
79 |
'quiet': True,
|
80 |
'no_check_certificate': True,
|
81 |
'prefer_insecure': True,
|
82 |
-
'nocheckcertificate': True,
|
83 |
}
|
84 |
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
|
85 |
info = ydl.extract_info(url, download=True)
|
@@ -91,16 +110,34 @@ def ffmpeg_method(url):
|
|
91 |
subprocess.run(command, check=True, capture_output=True)
|
92 |
return output_file
|
93 |
|
94 |
-
def
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
|
|
|
|
|
|
100 |
else:
|
101 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
|
103 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
try:
|
105 |
# Initialize the model
|
106 |
model = WhisperModel("cstr/whisper-large-v3-turbo-int8_float32", device="auto", compute_type="int8")
|
@@ -109,7 +146,10 @@ def transcribe_audio(input_source, batch_size):
|
|
109 |
# Handle input source
|
110 |
if isinstance(input_source, str) and (input_source.startswith('http://') or input_source.startswith('https://')):
|
111 |
# It's a URL, download the audio
|
112 |
-
audio_path = download_audio(input_source)
|
|
|
|
|
|
|
113 |
else:
|
114 |
# It's a local file path
|
115 |
audio_path = input_source
|
@@ -119,28 +159,36 @@ def transcribe_audio(input_source, batch_size):
|
|
119 |
segments, info = batched_model.transcribe(audio_path, batch_size=batch_size)
|
120 |
end_time = time.time()
|
121 |
|
122 |
-
#
|
123 |
-
transcription = ""
|
124 |
-
for segment in segments:
|
125 |
-
transcription += f"[{segment.start:.2f}s -> {segment.end:.2f}s] {segment.text}\n"
|
126 |
-
|
127 |
-
# Calculate metrics
|
128 |
transcription_time = end_time - start_time
|
129 |
real_time_factor = info.duration / transcription_time
|
130 |
audio_file_size = os.path.getsize(audio_path) / (1024 * 1024) # Size in MB
|
131 |
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
|
140 |
-
|
|
|
|
|
141 |
|
142 |
except Exception as e:
|
143 |
-
|
144 |
|
145 |
finally:
|
146 |
# Clean up downloaded file if it was a URL
|
@@ -150,22 +198,33 @@ def transcribe_audio(input_source, batch_size):
|
|
150 |
except:
|
151 |
pass
|
152 |
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
# Gradio interface
|
154 |
iface = gr.Interface(
|
155 |
fn=transcribe_audio,
|
156 |
inputs=[
|
157 |
gr.Textbox(label="Audio Source (Upload, MP3 URL, or YouTube URL)"),
|
158 |
-
gr.Slider(minimum=1, maximum=32, step=1, value=16, label="Batch Size")
|
|
|
|
|
|
|
|
|
|
|
|
|
159 |
],
|
160 |
-
outputs=gr.Textbox(label="Transcription and Metrics"),
|
161 |
title="Faster Whisper Multi-Input Transcription",
|
162 |
-
description="Enter an audio file path, MP3 URL, or YouTube URL to transcribe using Faster Whisper (GitHub version). Adjust the batch size
|
163 |
examples=[
|
164 |
-
["https://www.youtube.com/watch?v=
|
165 |
-
["https://
|
166 |
-
["path/to/local/audio.mp3", 16]
|
167 |
],
|
168 |
cache_examples=False # Prevents automatic processing of examples
|
169 |
)
|
170 |
|
171 |
-
iface.launch()
|
|
|
8 |
from urllib.parse import urlparse
|
9 |
|
10 |
# Clone and install faster-whisper from GitHub
|
11 |
+
try:
|
12 |
+
subprocess.run(["git", "clone", "https://github.com/SYSTRAN/faster-whisper.git"], check=True)
|
13 |
+
subprocess.run(["pip", "install", "-e", "./faster-whisper"], check=True)
|
14 |
+
except subprocess.CalledProcessError as e:
|
15 |
+
print(f"Error during faster-whisper installation: {e}")
|
16 |
+
sys.exit(1)
|
17 |
|
18 |
# Add the faster-whisper directory to the Python path
|
19 |
sys.path.append("./faster-whisper")
|
|
|
22 |
from faster_whisper.transcribe import BatchedInferencePipeline
|
23 |
import yt_dlp
|
24 |
|
25 |
+
def download_audio(url, method_choice):
|
26 |
parsed_url = urlparse(url)
|
27 |
if parsed_url.netloc in ['www.youtube.com', 'youtu.be', 'youtube.com']:
|
28 |
+
return download_youtube_audio(url, method_choice)
|
29 |
else:
|
30 |
+
return download_direct_audio(url, method_choice)
|
31 |
+
|
32 |
+
# Additional YouTube download methods
|
33 |
+
def download_youtube_audio(url, method_choice):
|
34 |
+
methods = {
|
35 |
+
'yt-dlp': youtube_dl_method,
|
36 |
+
'pytube': pytube_method,
|
37 |
+
'youtube-dl': youtube_dl_classic_method,
|
38 |
+
'yt-dlp-alt': youtube_dl_alternative_method,
|
39 |
+
'ffmpeg': ffmpeg_method,
|
40 |
+
'aria2': aria2_method
|
41 |
+
}
|
42 |
+
|
43 |
+
method = methods.get(method_choice, youtube_dl_method)
|
|
|
44 |
|
45 |
+
try:
|
46 |
+
return method(url)
|
47 |
+
except Exception as e:
|
48 |
+
return f"Error downloading using {method_choice}: {str(e)}"
|
49 |
|
50 |
def youtube_dl_method(url):
|
51 |
ydl_opts = {
|
|
|
71 |
os.rename(out_file, new_file)
|
72 |
return new_file
|
73 |
|
74 |
+
def youtube_dl_classic_method(url):
|
75 |
+
# Classic youtube-dl method
|
76 |
+
ydl_opts = {
|
77 |
+
'format': 'bestaudio/best',
|
78 |
+
'postprocessors': [{
|
79 |
+
'key': 'FFmpegExtractAudio',
|
80 |
+
'preferredcodec': 'mp3',
|
81 |
+
'preferredquality': '192',
|
82 |
+
}],
|
83 |
+
'outtmpl': '%(id)s.%(ext)s',
|
84 |
+
}
|
85 |
+
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
|
86 |
+
info = ydl.extract_info(url, download=True)
|
87 |
+
return f"{info['id']}.mp3"
|
88 |
+
|
89 |
def youtube_dl_alternative_method(url):
|
90 |
ydl_opts = {
|
91 |
'format': 'bestaudio/best',
|
|
|
99 |
'quiet': True,
|
100 |
'no_check_certificate': True,
|
101 |
'prefer_insecure': True,
|
|
|
102 |
}
|
103 |
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
|
104 |
info = ydl.extract_info(url, download=True)
|
|
|
110 |
subprocess.run(command, check=True, capture_output=True)
|
111 |
return output_file
|
112 |
|
113 |
+
def aria2_method(url):
|
114 |
+
output_file = tempfile.mktemp(suffix='.mp3')
|
115 |
+
command = ['aria2c', '--split=4', '--max-connection-per-server=4', '--out', output_file, url]
|
116 |
+
subprocess.run(command, check=True, capture_output=True)
|
117 |
+
return output_file
|
118 |
+
|
119 |
+
def download_direct_audio(url, method_choice):
|
120 |
+
if method_choice == 'wget':
|
121 |
+
return wget_method(url)
|
122 |
else:
|
123 |
+
try:
|
124 |
+
response = requests.get(url)
|
125 |
+
if response.status_code == 200:
|
126 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as temp_file:
|
127 |
+
temp_file.write(response.content)
|
128 |
+
return temp_file.name
|
129 |
+
else:
|
130 |
+
raise Exception(f"Failed to download audio from {url}")
|
131 |
+
except Exception as e:
|
132 |
+
return f"Error downloading direct audio: {str(e)}"
|
133 |
|
134 |
+
def wget_method(url):
|
135 |
+
output_file = tempfile.mktemp(suffix='.mp3')
|
136 |
+
command = ['wget', '-O', output_file, url]
|
137 |
+
subprocess.run(command, check=True, capture_output=True)
|
138 |
+
return output_file
|
139 |
+
|
140 |
+
def transcribe_audio(input_source, batch_size, download_method):
|
141 |
try:
|
142 |
# Initialize the model
|
143 |
model = WhisperModel("cstr/whisper-large-v3-turbo-int8_float32", device="auto", compute_type="int8")
|
|
|
146 |
# Handle input source
|
147 |
if isinstance(input_source, str) and (input_source.startswith('http://') or input_source.startswith('https://')):
|
148 |
# It's a URL, download the audio
|
149 |
+
audio_path = download_audio(input_source, download_method)
|
150 |
+
if audio_path.startswith("Error"):
|
151 |
+
yield f"Error: {audio_path}", "", None
|
152 |
+
return
|
153 |
else:
|
154 |
# It's a local file path
|
155 |
audio_path = input_source
|
|
|
159 |
segments, info = batched_model.transcribe(audio_path, batch_size=batch_size)
|
160 |
end_time = time.time()
|
161 |
|
162 |
+
# Show initial metrics as soon as possible
|
|
|
|
|
|
|
|
|
|
|
163 |
transcription_time = end_time - start_time
|
164 |
real_time_factor = info.duration / transcription_time
|
165 |
audio_file_size = os.path.getsize(audio_path) / (1024 * 1024) # Size in MB
|
166 |
|
167 |
+
metrics_output = (
|
168 |
+
f"Language: {info.language}, Probability: {info.language_probability:.2f}\n"
|
169 |
+
f"Duration: {info.duration:.2f}s, Duration after VAD: {info.duration_after_vad:.2f}s\n"
|
170 |
+
f"Transcription time: {transcription_time:.2f} seconds\n"
|
171 |
+
f"Real-time factor: {real_time_factor:.2f}x\n"
|
172 |
+
f"Audio file size: {audio_file_size:.2f} MB\n"
|
173 |
+
)
|
174 |
+
|
175 |
+
yield metrics_output, "", None
|
176 |
+
|
177 |
+
transcription = ""
|
178 |
+
|
179 |
+
# Stream transcription output gradually
|
180 |
+
for segment in segments:
|
181 |
+
transcription_segment = f"[{segment.start:.2f}s -> {segment.end:.2f}s] {segment.text}\n"
|
182 |
+
transcription += transcription_segment
|
183 |
+
|
184 |
+
yield metrics_output, transcription, None
|
185 |
|
186 |
+
# Final output with download option
|
187 |
+
transcription_file = save_transcription(transcription)
|
188 |
+
yield metrics_output, transcription, transcription_file
|
189 |
|
190 |
except Exception as e:
|
191 |
+
yield f"An error occurred: {str(e)}", "", None
|
192 |
|
193 |
finally:
|
194 |
# Clean up downloaded file if it was a URL
|
|
|
198 |
except:
|
199 |
pass
|
200 |
|
201 |
+
def save_transcription(transcription):
|
202 |
+
file_path = tempfile.mktemp(suffix='.txt')
|
203 |
+
with open(file_path, 'w') as f:
|
204 |
+
f.write(transcription)
|
205 |
+
return file_path
|
206 |
+
|
207 |
# Gradio interface
|
208 |
iface = gr.Interface(
|
209 |
fn=transcribe_audio,
|
210 |
inputs=[
|
211 |
gr.Textbox(label="Audio Source (Upload, MP3 URL, or YouTube URL)"),
|
212 |
+
gr.Slider(minimum=1, maximum=32, step=1, value=16, label="Batch Size"),
|
213 |
+
gr.Dropdown(choices=["yt-dlp", "pytube", "youtube-dl", "yt-dlp-alt", "ffmpeg", "aria2", "wget"], label="Download Method", value="yt-dlp")
|
214 |
+
],
|
215 |
+
outputs=[
|
216 |
+
gr.Textbox(label="Transcription Metrics and Verbose Messages", live=True),
|
217 |
+
gr.Textbox(label="Transcription", live=True),
|
218 |
+
gr.File(label="Download Transcription")
|
219 |
],
|
|
|
220 |
title="Faster Whisper Multi-Input Transcription",
|
221 |
+
description="Enter an audio file path, MP3 URL, or YouTube URL to transcribe using Faster Whisper (GitHub version). Adjust the batch size and choose a download method.",
|
222 |
examples=[
|
223 |
+
["https://www.youtube.com/watch?v=daQ_hqA6HDo", 16, "yt-dlp"],
|
224 |
+
["https://mcdn.podbean.com/mf/web/dir5wty678b6g4vg/HoP_453_-_The_Price_is_Right_-_Law_and_Economics_in_the_Second_Scholastic5yxzh.mp3", 16, "ffmpeg"],
|
225 |
+
["path/to/local/audio.mp3", 16, "yt-dlp"]
|
226 |
],
|
227 |
cache_examples=False # Prevents automatic processing of examples
|
228 |
)
|
229 |
|
230 |
+
iface.launch()
|