cstr's picture
Update app.py
64259e4 verified
raw
history blame
9.62 kB
import gradio as gr
import os
import time
import sys
import subprocess
import tempfile
import requests
from urllib.parse import urlparse
from pydub import AudioSegment
# Clone and install faster-whisper from GitHub
try:
subprocess.run(["git", "clone", "https://github.com/SYSTRAN/faster-whisper.git"], check=True)
subprocess.run(["pip", "install", "-e", "./faster-whisper"], check=True)
except subprocess.CalledProcessError as e:
print(f"Error during faster-whisper installation: {e}")
sys.exit(1)
# Add the faster-whisper directory to the Python path
sys.path.append("./faster-whisper")
from faster_whisper import WhisperModel
from faster_whisper.transcribe import BatchedInferencePipeline
import yt_dlp
def download_audio(url, method_choice):
parsed_url = urlparse(url)
if parsed_url.netloc in ['www.youtube.com', 'youtu.be', 'youtube.com']:
return download_youtube_audio(url, method_choice)
else:
return download_direct_audio(url, method_choice)
# Additional YouTube download methods
def download_youtube_audio(url, method_choice):
methods = {
'yt-dlp': youtube_dl_method,
'pytube': pytube_method,
'youtube-dl': youtube_dl_classic_method,
'yt-dlp-alt': youtube_dl_alternative_method,
'ffmpeg': ffmpeg_method,
'aria2': aria2_method
}
method = methods.get(method_choice, youtube_dl_method)
try:
return method(url)
except Exception as e:
return f"Error downloading using {method_choice}: {str(e)}"
def youtube_dl_method(url):
ydl_opts = {
'format': 'bestaudio/best',
'postprocessors': [{
'key': 'FFmpegExtractAudio',
'preferredcodec': 'mp3',
'preferredquality': '192',
}],
'outtmpl': '%(id)s.%(ext)s',
}
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
info = ydl.extract_info(url, download=True)
return f"{info['id']}.mp3"
def pytube_method(url):
from pytube import YouTube
yt = YouTube(url)
audio_stream = yt.streams.filter(only_audio=True).first()
out_file = audio_stream.download()
base, ext = os.path.splitext(out_file)
new_file = base + '.mp3'
os.rename(out_file, new_file)
return new_file
def youtube_dl_classic_method(url):
# Classic youtube-dl method
ydl_opts = {
'format': 'bestaudio/best',
'postprocessors': [{
'key': 'FFmpegExtractAudio',
'preferredcodec': 'mp3',
'preferredquality': '192',
}],
'outtmpl': '%(id)s.%(ext)s',
}
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
info = ydl.extract_info(url, download=True)
return f"{info['id']}.mp3"
def youtube_dl_alternative_method(url):
ydl_opts = {
'format': 'bestaudio/best',
'postprocessors': [{
'key': 'FFmpegExtractAudio',
'preferredcodec': 'mp3',
'preferredquality': '192',
}],
'outtmpl': '%(id)s.%(ext)s',
'no_warnings': True,
'quiet': True,
'no_check_certificate': True,
'prefer_insecure': True,
}
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
info = ydl.extract_info(url, download=True)
return f"{info['id']}.mp3"
def ffmpeg_method(url):
output_file = tempfile.mktemp(suffix='.mp3')
command = ['ffmpeg', '-i', url, '-vn', '-acodec', 'libmp3lame', '-q:a', '2', output_file]
subprocess.run(command, check=True, capture_output=True)
return output_file
def aria2_method(url):
output_file = tempfile.mktemp(suffix='.mp3')
command = ['aria2c', '--split=4', '--max-connection-per-server=4', '--out', output_file, url]
subprocess.run(command, check=True, capture_output=True)
return output_file
def download_direct_audio(url, method_choice):
if method_choice == 'wget':
return wget_method(url)
else:
try:
response = requests.get(url)
if response.status_code == 200:
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as temp_file:
temp_file.write(response.content)
return temp_file.name
else:
raise Exception(f"Failed to download audio from {url}")
except Exception as e:
return f"Error downloading direct audio: {str(e)}"
def wget_method(url):
output_file = tempfile.mktemp(suffix='.mp3')
command = ['wget', '-O', output_file, url]
subprocess.run(command, check=True, capture_output=True)
return output_file
def trim_audio(audio_path, start_time, end_time):
audio = AudioSegment.from_mp3(audio_path)
trimmed_audio = audio[start_time*1000:end_time*1000] if end_time else audio[start_time*1000:]
trimmed_audio_path = tempfile.mktemp(suffix='.mp3')
trimmed_audio.export(trimmed_audio_path, format="mp3")
return trimmed_audio_path
def transcribe_audio(input_source, batch_size, download_method, start_time=None, end_time=None, verbose=False):
try:
# Initialize the model
model = WhisperModel("cstr/whisper-large-v3-turbo-int8_float32", device="auto", compute_type="int8")
batched_model = BatchedInferencePipeline(model=model)
# Handle input source
if isinstance(input_source, str) and (input_source.startswith('http://') or input_source.startswith('https://')):
# It's a URL, download the audio
audio_path = download_audio(input_source, download_method)
if audio_path.startswith("Error"):
yield f"Error: {audio_path}", "", None
return
else:
# It's a local file path
audio_path = input_source
# Trim the audio if start_time or end_time is specified
if start_time is not None or end_time is not None:
trimmed_audio_path = trim_audio(audio_path, start_time or 0, end_time)
audio_path = trimmed_audio_path
# Benchmark transcription time
start_time_perf = time.time()
segments, info = batched_model.transcribe(audio_path, batch_size=batch_size, initial_prompt=None)
end_time_perf = time.time()
# Show initial metrics as soon as possible
transcription_time = end_time_perf - start_time_perf
real_time_factor = info.duration / transcription_time
audio_file_size = os.path.getsize(audio_path) / (1024 * 1024) # Size in MB
metrics_output = (
f"Language: {info.language}, Probability: {info.language_probability:.2f}\n"
f"Duration: {info.duration:.2f}s, Duration after VAD: {info.duration_after_vad:.2f}s\n"
f"Transcription time: {transcription_time:.2f} seconds\n"
f"Real-time factor: {real_time_factor:.2f}x\n"
f"Audio file size: {audio_file_size:.2f} MB\n"
)
if verbose:
yield metrics_output, "", None
transcription = ""
# Stream transcription output gradually
for segment in segments:
transcription_segment = f"[{segment.start:.2f}s -> {segment.end:.2f}s] {segment.text}\n"
transcription += transcription_segment
if verbose:
yield metrics_output, transcription, None
# Final output with download option
transcription_file = save_transcription(transcription)
yield metrics_output, transcription, transcription_file
except Exception as e:
yield f"An error occurred: {str(e)}", "", None
finally:
# Clean up downloaded and trimmed files
if isinstance(input_source, str) and (input_source.startswith('http://') or input_source.startswith('https://')):
try:
os.remove(audio_path)
except:
pass
if start_time is not None or end_time is not None:
try:
os.remove(trimmed_audio_path)
except:
pass
def save_transcription(transcription):
file_path = tempfile.mktemp(suffix='.txt')
with open(file_path, 'w') as f:
f.write(transcription)
return file_path
# Gradio interface
iface = gr.Interface(
fn=transcribe_audio,
inputs=[
gr.Textbox(label="Audio Source (Upload, MP3 URL, or YouTube URL)"),
gr.Slider(minimum=1, maximum=32, step=1, value=16, label="Batch Size"),
gr.Dropdown(choices=["yt-dlp", "pytube", "youtube-dl", "yt-dlp-alt", "ffmpeg", "aria2", "wget"], label="Download Method", value="yt-dlp"),
gr.Number(label="Start Time (seconds)", value=0, optional=True),
gr.Number(label="End Time (seconds)", optional=True),
gr.Checkbox(label="Verbose Output", value=False)
],
outputs=[
gr.Textbox(label="Transcription Metrics and Verbose Messages", live=True),
gr.Textbox(label="Transcription", live=True),
gr.File(label="Download Transcription")
],
title="Faster Whisper Multi-Input Transcription",
description="Enter an audio file path, MP3 URL, or YouTube URL to transcribe using Faster Whisper (GitHub version). Adjust the batch size and choose a download method.",
examples=[
["https://www.youtube.com/watch?v=daQ_hqA6HDo", 16, "yt-dlp", 0, None, False],
["https://mcdn.podbean.com/mf/web/dir5wty678b6g4vg/HoP_453_-_The_Price_is_Right_-_Law_and_Economics_in_the_Second_Scholastic5yxzh.mp3", 16, "ffmpeg", 0, 300, True],
["path/to/local/audio.mp3", 16, "yt-dlp", 60, 180, False]
],
cache_examples=False # Prevents automatic processing of examples
)
iface.launch()