Spaces:
Running
Running
import gradio as gr | |
import os | |
import time | |
import sys | |
import tempfile | |
import subprocess | |
import requests | |
from urllib.parse import urlparse | |
from pydub import AudioSegment | |
import logging | |
import torch | |
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline | |
import yt_dlp | |
logging.basicConfig(level=logging.INFO) | |
# Clone and install faster-whisper from GitHub | |
# (we should be able to do this in build.sh in a hf space) | |
try: | |
subprocess.run(["git", "clone", "https://github.com/SYSTRAN/faster-whisper.git"], check=True) | |
subprocess.run(["pip", "install", "-e", "./faster-whisper"], check=True) | |
except subprocess.CalledProcessError as e: | |
print(f"Error during faster-whisper installation: {e}") | |
sys.exit(1) | |
# Add the faster-whisper directory to the Python path | |
sys.path.append("./faster-whisper") | |
from faster_whisper import WhisperModel | |
from faster_whisper.transcribe import BatchedInferencePipeline | |
device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
def download_audio(url, method_choice): | |
parsed_url = urlparse(url) | |
if parsed_url.netloc in ['www.youtube.com', 'youtu.be', 'youtube.com']: | |
return download_youtube_audio(url, method_choice) | |
else: | |
return download_direct_audio(url, method_choice) | |
def download_youtube_audio(url, method_choice): | |
methods = { | |
'yt-dlp': youtube_dl_method, | |
'pytube': pytube_method, | |
'youtube-dl': youtube_dl_classic_method, | |
'yt-dlp-alt': youtube_dl_alternative_method, | |
'ffmpeg': ffmpeg_method, | |
'aria2': aria2_method | |
} | |
method = methods.get(method_choice, youtube_dl_method) | |
try: | |
return method(url) | |
except Exception as e: | |
logging.error(f"Error downloading using {method_choice}: {str(e)}") | |
return None | |
def youtube_dl_method(url): | |
ydl_opts = { | |
'format': 'bestaudio/best', | |
'postprocessors': [{ | |
'key': 'FFmpegExtractAudio', | |
'preferredcodec': 'mp3', | |
'preferredquality': '192', | |
}], | |
'outtmpl': '%(id)s.%(ext)s', | |
} | |
with yt_dlp.YoutubeDL(ydl_opts) as ydl: | |
info = ydl.extract_info(url, download=True) | |
return f"{info['id']}.mp3" | |
def pytube_method(url): | |
from pytube import YouTube | |
yt = YouTube(url) | |
audio_stream = yt.streams.filter(only_audio=True).first() | |
out_file = audio_stream.download() | |
base, ext = os.path.splitext(out_file) | |
new_file = base + '.mp3' | |
os.rename(out_file, new_file) | |
return new_file | |
def youtube_dl_classic_method(url): | |
ydl_opts = { | |
'format': 'bestaudio/best', | |
'postprocessors': [{ | |
'key': 'FFmpegExtractAudio', | |
'preferredcodec': 'mp3', | |
'preferredquality': '192', | |
}], | |
'outtmpl': '%(id)s.%(ext)s', | |
} | |
with yt_dlp.YoutubeDL(ydl_opts) as ydl: | |
info = ydl.extract_info(url, download=True) | |
return f"{info['id']}.mp3" | |
def youtube_dl_alternative_method(url): | |
ydl_opts = { | |
'format': 'bestaudio/best', | |
'postprocessors': [{ | |
'key': 'FFmpegExtractAudio', | |
'preferredcodec': 'mp3', | |
'preferredquality': '192', | |
}], | |
'outtmpl': '%(id)s.%(ext)s', | |
'no_warnings': True, | |
'quiet': True, | |
'no_check_certificate': True, | |
'prefer_insecure': True, | |
} | |
with yt_dlp.YoutubeDL(ydl_opts) as ydl: | |
info = ydl.extract_info(url, download=True) | |
return f"{info['id']}.mp3" | |
def ffmpeg_method(url): | |
output_file = tempfile.mktemp(suffix='.mp3') | |
command = ['ffmpeg', '-i', url, '-vn', '-acodec', 'libmp3lame', '-q:a', '2', output_file] | |
subprocess.run(command, check=True, capture_output=True) | |
return output_file | |
def aria2_method(url): | |
output_file = tempfile.mktemp(suffix='.mp3') | |
command = ['aria2c', '--split=4', '--max-connection-per-server=4', '--out', output_file, url] | |
subprocess.run(command, check=True, capture_output=True) | |
return output_file | |
def download_direct_audio(url, method_choice): | |
if method_choice == 'wget': | |
return wget_method(url) | |
else: | |
try: | |
response = requests.get(url) | |
if response.status_code == 200: | |
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as temp_file: | |
temp_file.write(response.content) | |
return temp_file.name | |
else: | |
raise Exception(f"Failed to download audio from {url}") | |
except Exception as e: | |
logging.error(f"Error downloading direct audio: {str(e)}") | |
return None | |
def wget_method(url): | |
output_file = tempfile.mktemp(suffix='.mp3') | |
command = ['wget', '-O', output_file, url] | |
subprocess.run(command, check=True, capture_output=True) | |
return output_file | |
def trim_audio(audio_path, start_time, end_time): | |
audio = AudioSegment.from_file(audio_path) | |
trimmed_audio = audio[start_time*1000:end_time*1000] if end_time else audio[start_time*1000:] | |
trimmed_audio_path = tempfile.mktemp(suffix='.wav') | |
trimmed_audio.export(trimmed_audio_path, format="wav") | |
return trimmed_audio_path | |
def save_transcription(transcription): | |
file_path = tempfile.mktemp(suffix='.txt') | |
with open(file_path, 'w') as f: | |
f.write(transcription) | |
return file_path | |
def get_model_options(pipeline_type): | |
if pipeline_type == "faster-batched": | |
return ["cstr/whisper-large-v3-turbo-int8_float32", "deepdml/faster-whisper-large-v3-turbo-ct2", "Systran/faster-whisper-large-v3", "GalaktischeGurke/primeline-whisper-large-v3-german-ct2"] | |
elif pipeline_type == "faster-sequenced": | |
return ["cstr/whisper-large-v3-turbo-int8_float32", "deepdml/faster-whisper-large-v3-turbo-ct2", "Systran/faster-whisper-large-v3", "GalaktischeGurke/primeline-whisper-large-v3-german-ct2"] | |
elif pipeline_type == "transformers": | |
return ["openai/whisper-large-v3", "openai/whisper-large-v3-turbo", "primeline/whisper-large-v3-german"] | |
else: | |
return [] | |
def update_model_dropdown(pipeline_type): | |
return gr.Dropdown.update(choices=get_model_options(pipeline_type), value=get_model_options(pipeline_type)[0]) | |
def transcribe_audio(input_source, pipeline_type, model_id, dtype, batch_size, download_method, start_time=None, end_time=None, verbose=False): | |
try: | |
if pipeline_type == "faster-batched": | |
model = WhisperModel(model_id, device="auto", compute_type=dtype) | |
pipeline = BatchedInferencePipeline(model=model) | |
elif pipeline_type == "faster-sequenced": | |
model = WhisperModel(model_id) | |
pipeline = model.transcribe | |
elif pipeline_type == "transformers": | |
torch_dtype = torch.float16 if dtype == "float16" else torch.float32 | |
model = AutoModelForSpeechSeq2Seq.from_pretrained( | |
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True | |
) | |
model.to(device) | |
processor = AutoProcessor.from_pretrained(model_id) | |
pipeline = pipeline( | |
"automatic-speech-recognition", | |
model=model, | |
tokenizer=processor.tokenizer, | |
feature_extractor=processor.feature_extractor, | |
chunk_length_s=30, | |
batch_size=batch_size, | |
return_timestamps=True, | |
torch_dtype=torch_dtype, | |
device=device, | |
) | |
else: | |
raise ValueError("Invalid pipeline type") | |
if isinstance(input_source, str) and (input_source.startswith('http://') or input_source.startswith('https://')): | |
audio_path = download_audio(input_source, download_method) | |
if audio_path.startswith("Error"): | |
yield f"Error: {audio_path}", "", None | |
return | |
else: | |
audio_path = input_source | |
if start_time is not None or end_time is not None: | |
trimmed_audio_path = trim_audio(audio_path, start_time or 0, end_time) | |
audio_path = trimmed_audio_path | |
start_time_perf = time.time() | |
if pipeline_type in ["faster-batched", "faster-sequenced"]: | |
segments, info = pipeline(audio_path, batch_size=batch_size) | |
else: | |
result = pipeline(audio_path) | |
segments = result["chunks"] | |
end_time_perf = time.time() | |
transcription_time = end_time_perf - start_time_perf | |
audio_file_size = os.path.getsize(audio_path) / (1024 * 1024) | |
metrics_output = ( | |
f"Transcription time: {transcription_time:.2f} seconds\n" | |
f"Audio file size: {audio_file_size:.2f} MB\n" | |
) | |
if verbose: | |
yield metrics_output, "", None | |
transcription = "" | |
for segment in segments: | |
transcription_segment = ( | |
f"[{segment.start:.2f}s -> {segment.end:.2f}s] {segment.text}\n" | |
if pipeline_type in ["faster-batched", "faster-sequenced"] else | |
f"[{segment['timestamp'][0]:.2f}s -> {segment['timestamp'][1]:.2f}s] {segment['text']}\n" | |
) | |
transcription += transcription_segment | |
if verbose: | |
yield metrics_output, transcription, None | |
transcription_file = save_transcription(transcription) | |
yield metrics_output, transcription, transcription_file | |
except Exception as e: | |
yield f"An error occurred: {str(e)}", "", None | |
finally: | |
if isinstance(input_source, str) and (input_source.startswith('http://') or input_source.startswith('https://')): | |
try: | |
os.remove(audio_path) | |
except: | |
pass | |
if start_time is not None or end_time is not None: | |
try: | |
os.remove(trimmed_audio_path) | |
except: | |
pass | |
iface = gr.Interface( | |
fn=transcribe_audio, | |
inputs=[ | |
gr.Textbox(label="Audio Source (Upload, URL, or YouTube URL)"), | |
gr.Dropdown(choices=["faster-batched", "faster-sequenced", "transformers"], label="Pipeline Type", value="faster-batched"), | |
gr.Dropdown(label="Model", choices=get_model_options("faster-batched"), value=get_model_options("faster-batched")[0]), | |
gr.Dropdown(choices=["int8", "float16", "float32"], label="Data Type", value="int8"), | |
gr.Slider(minimum=1, maximum=32, step=1, value=16, label="Batch Size"), | |
gr.Dropdown(choices=["yt-dlp", "pytube", "youtube-dl", "yt-dlp-alt", "ffmpeg", "aria2", "wget"], label="Download Method", value="yt-dlp"), | |
gr.Number(label="Start Time (seconds)", value=0), | |
gr.Number(label="End Time (seconds)", value=0), | |
gr.Checkbox(label="Verbose Output", value=False) | |
], | |
outputs=[ | |
gr.Textbox(label="Transcription Metrics and Verbose Messages", lines=10), | |
gr.Textbox(label="Transcription", lines=10), | |
gr.File(label="Download Transcription") | |
], | |
title="Multi-Pipeline Transcription", | |
description="Transcribe audio using multiple pipelines and models.", | |
examples=[ | |
["https://www.youtube.com/watch?v=daQ_hqA6HDo", "faster-batched", "cstr/whisper-large-v3-turbo-int8_float32", "int8", 16, "yt-dlp", 0, None, False], | |
["https://mcdn.podbean.com/mf/web/dir5wty678b6g4vg/HoP_453_-_The_Price_is_Right_-_Law_and_Economics_in_the_Second_Scholastic5yxzh.mp3", "faster-sequenced", "deepdml/faster-whisper-large-v3-turbo-ct2", "float16", 1, "ffmpeg", 0, 300, True], | |
["path/to/local/audio.mp3", "transformers", "openai/whisper-large-v3", "float16", 16, "yt-dlp", 60, 180, False] | |
], | |
cache_examples=False, | |
) | |
pipeline_type_dropdown = iface.inputs[1] | |
model_dropdown = iface.inputs[2] | |
pipeline_type_dropdown.change(update_model_dropdown, inputs=[pipeline_type_dropdown], outputs=[model_dropdown]) | |
iface.launch() |