import gradio as gr from huggingface_hub import InferenceClient # Initialize Hugging Face client with your model client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") def respond( message, history, system_message, max_tokens, temperature, top_p, ): # Prepare messages for the API call messages = [{"role": "system", "content": system_message}] messages.append({"role": "user", "content": message}) # Make API call without streaming response = client.chat_completion( messages=messages, max_tokens=max_tokens, temperature=temperature, top_p=top_p, stream=False, # Streaming disabled ) # Extract the response content response_text = response.choices[0].message['content'] return response_text # Directly return the response text # Gradio interface setup demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), ], ) if __name__ == "__main__": demo.launch()