Spaces:
Sleeping
Sleeping
import gradio as gr | |
import coremltools as ct | |
import numpy as np | |
import requests | |
import huggingface_hub as hf | |
from huggingface_hub import hf_hub_download | |
from huggingface_hub import login | |
import os | |
import PIL | |
#login() | |
read_key = os.environ.get('HF_TOKEN', True) | |
extractor_path = hf_hub_download(repo_id="crossprism/efficientnetv221k-M", filename="efficientnetV2M21kExtractor.mlmodel", use_auth_token = read_key) | |
classifier_path = hf_hub_download(repo_id="crossprism/tesla_sentry_dings", filename="tesla_sentry_door_ding.mlpackage/Data/com.apple.CoreML/tesla_door_dings.mlmodel", use_auth_token = read_key) | |
print(f"Loading extractor...{extractor_path}") | |
extractor = ct.models.MLModel(extractor_path) | |
print(f"Loading classifier...{classifier_path}") | |
classifier = ct.models.MLModel(classifier_path) | |
def classify_image(image): | |
image = image.resize((480,480)) | |
features = extractor.predict({"image":image}) | |
print(features) | |
features = features["Identity"] | |
isDing = classifier.predict({"features":features[0]}) | |
print(isDing) | |
isDing = isDing["Identity"] | |
return {'ding': isDing["ding"]} | |
image = gr.Image(type='pil') | |
label = gr.Label(num_top_classes=3) | |
gr.Interface(fn=classify_image, inputs=image, outputs=label, examples = [["test.jpg"]]).launch() | |