File size: 947 Bytes
d2513bf
 
d047d46
d2513bf
295cc0c
 
 
d047d46
 
 
 
 
 
 
 
 
fbf52e6
 
 
 
 
 
d2513bf
d047d46
d2513bf
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
import tensorflow as tf

def create_model():

    LAYERS = [tf.keras.layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1), name="convlayer1"),
              tf.keras.layers.Conv2D(64, (3, 3), activation='relu', name="convlayer2"),
              tf.keras.layers.Flatten(input_shape=[28,28], name="inputlayer"),
              tf.keras.layers.Dense(300, activation='relu', name="hiddenlayer1"),
              tf.keras.layers.Dense(100, activation='relu', name="hiddenlayer2"),
              tf.keras.layers.Dense(10, activation='softmax', name="outputlayer")]
    
    model = tf.keras.models.Sequential(LAYERS)
    
    model.load_weights('./checkpoint')
    
    
    # LOSS_FUNCTION = tf.keras.losses.SparseCategoricalCrossentropy() # HERE
    # OPTIMIZER = tf.keras.optimizers.legacy.Adam()
    # METRICS = ["accuracy"]
    # model.compile(loss=LOSS_FUNCTION,
    # optimizer=OPTIMIZER,
    # metrics=METRICS)

    return model