# Import all of the dependencies import streamlit as st import os import imageio import numpy as np import tensorflow as tf from utils import load_data, num_to_char from modelutil import load_model # Set the layout to the streamlit app as wide st.set_page_config(layout='wide') # Setup the sidebar with st.sidebar: st.image('https://plus.unsplash.com/premium_photo-1682309676673-392c56015c5c?ixlib=rb-4.0.3&ixid=M3wxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8fA%3D%3D&auto=format&fit=crop&w=1000&q=80') st.title('Lip Reading') st.info('This application is originally developed from the LipNet deep learning model.') st.title('LipNet using StreamLit ✌🏻') # Generating a list of options or videos options = os.listdir(os.path.join('data', 's1')) selected_video = st.selectbox('Choose video', options) # Generate two columns col1, col2 = st.columns(2) if options: # Rendering the video with col1: st.info('The video below displays the converted video in mp4 format') file_path = os.path.join('data','s1', selected_video) os.system(f'ffmpeg -i {file_path} -vcodec libx264 test_video.mp4 -y') # Rendering inside of the app video = open('test_video.mp4', 'rb') video_bytes = video.read() st.video(video_bytes) with col2: st.info('👀 This is all the machine learning model sees when making a prediction') video, annotations,image_data = load_data(tf.convert_to_tensor(file_path)) # st.text(video.shape) imageio.mimsave('animation.gif',np.squeeze((video * 50).astype(np.uint8)) , duration=100) st.image('animation.gif', width=400) st.info('This is the output of the machine learning model as tokens') model = load_model() yhat = model.predict(tf.expand_dims(video, axis=0)) decoder = tf.keras.backend.ctc_decode(yhat, [75], greedy=True)[0][0].numpy() st.text(decoder) # Convert prediction to text st.info('Decode the raw tokens into words') converted_prediction = tf.strings.reduce_join(num_to_char(decoder)).numpy().decode('utf-8') st.text(converted_prediction)