|
import gradio as gr |
|
import spaces |
|
from gradio_litmodel3d import LitModel3D |
|
|
|
import os |
|
os.environ['SPCONV_ALGO'] = 'native' |
|
from typing import * |
|
import torch |
|
import numpy as np |
|
import imageio |
|
import uuid |
|
from easydict import EasyDict as edict |
|
from PIL import Image |
|
from trellis.pipelines import TrellisImageTo3DPipeline |
|
from trellis.representations import Gaussian, MeshExtractResult |
|
from trellis.utils import render_utils, postprocessing_utils |
|
|
|
import logging |
|
|
|
|
|
logging.basicConfig( |
|
level=logging.INFO, |
|
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s", |
|
handlers=[ |
|
logging.StreamHandler() |
|
] |
|
) |
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
logger.info(f"ATTN_BACKEND: {os.environ.get('ATTN_BACKEND')}") |
|
logger.info(f"ATTN_DEBUG: {os.environ.get('ATTN_DEBUG')}") |
|
logger.info(f"SPARSE_BACKEND: {os.environ.get('SPARSE_BACKEND')}") |
|
logger.info(f"SPARSE_DEBUG: {os.environ.get('SPARSE_DEBUG')}") |
|
logger.info(f"SPARSE_ATTN_BACKEND: {os.environ.get('SPARSE_ATTN_BACKEND')}") |
|
|
|
MAX_SEED = np.iinfo(np.int32).max |
|
TMP_DIR = "/tmp/Trellis-demo" |
|
|
|
os.makedirs(TMP_DIR, exist_ok=True) |
|
|
|
|
|
def preprocess_image(image: Image.Image) -> Tuple[str, Image.Image]: |
|
""" |
|
Preprocess the input image. |
|
|
|
Args: |
|
image (Image.Image): The input image. |
|
|
|
Returns: |
|
str: uuid of the trial. |
|
Image.Image: The preprocessed image. |
|
""" |
|
trial_id = str(uuid.uuid4()) |
|
processed_image = pipeline.preprocess_image(image) |
|
processed_image.save(f"{TMP_DIR}/{trial_id}.png") |
|
return trial_id, processed_image |
|
|
|
|
|
def pack_state(gs: Gaussian, mesh: MeshExtractResult, trial_id: str) -> dict: |
|
return { |
|
'gaussian': { |
|
**gs.init_params, |
|
'_xyz': gs._xyz.cpu().numpy(), |
|
'_features_dc': gs._features_dc.cpu().numpy(), |
|
'_scaling': gs._scaling.cpu().numpy(), |
|
'_rotation': gs._rotation.cpu().numpy(), |
|
'_opacity': gs._opacity.cpu().numpy(), |
|
}, |
|
'mesh': { |
|
'vertices': mesh.vertices.cpu().numpy(), |
|
'faces': mesh.faces.cpu().numpy(), |
|
}, |
|
'trial_id': trial_id, |
|
} |
|
|
|
|
|
def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]: |
|
gs = Gaussian( |
|
aabb=state['gaussian']['aabb'], |
|
sh_degree=state['gaussian']['sh_degree'], |
|
mininum_kernel_size=state['gaussian']['mininum_kernel_size'], |
|
scaling_bias=state['gaussian']['scaling_bias'], |
|
opacity_bias=state['gaussian']['opacity_bias'], |
|
scaling_activation=state['gaussian']['scaling_activation'], |
|
) |
|
gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda') |
|
gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda') |
|
gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda') |
|
gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda') |
|
gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda') |
|
|
|
mesh = edict( |
|
vertices=torch.tensor(state['mesh']['vertices'], device='cuda'), |
|
faces=torch.tensor(state['mesh']['faces'], device='cuda'), |
|
) |
|
|
|
return gs, mesh, state['trial_id'] |
|
|
|
|
|
@spaces.GPU |
|
def image_to_3d(trial_id: str, seed: int, randomize_seed: bool, ss_guidance_strength: float, ss_sampling_steps: int, slat_guidance_strength: float, slat_sampling_steps: int) -> Tuple[dict, str]: |
|
""" |
|
Convert an image to a 3D model. |
|
|
|
Args: |
|
trial_id (str): The uuid of the trial. |
|
seed (int): The random seed. |
|
randomize_seed (bool): Whether to randomize the seed. |
|
ss_guidance_strength (float): The guidance strength for sparse structure generation. |
|
ss_sampling_steps (int): The number of sampling steps for sparse structure generation. |
|
slat_guidance_strength (float): The guidance strength for structured latent generation. |
|
slat_sampling_steps (int): The number of sampling steps for structured latent generation. |
|
|
|
Returns: |
|
dict: The information of the generated 3D model. |
|
str: The path to the video of the 3D model. |
|
""" |
|
if randomize_seed: |
|
seed = np.random.randint(0, MAX_SEED) |
|
outputs = pipeline.run( |
|
Image.open(f"{TMP_DIR}/{trial_id}.png"), |
|
seed=seed, |
|
formats=["gaussian", "mesh"], |
|
preprocess_image=False, |
|
sparse_structure_sampler_params={ |
|
"steps": ss_sampling_steps, |
|
"cfg_strength": ss_guidance_strength, |
|
}, |
|
slat_sampler_params={ |
|
"steps": slat_sampling_steps, |
|
"cfg_strength": slat_guidance_strength, |
|
}, |
|
) |
|
video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color'] |
|
video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal'] |
|
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))] |
|
trial_id = uuid.uuid4() |
|
video_path = f"{TMP_DIR}/{trial_id}.mp4" |
|
os.makedirs(os.path.dirname(video_path), exist_ok=True) |
|
imageio.mimsave(video_path, video, fps=15) |
|
state = pack_state(outputs['gaussian'][0], outputs['mesh'][0], trial_id) |
|
return state, video_path |
|
|
|
|
|
@spaces.GPU |
|
def extract_glb(state: dict, mesh_simplify: float, texture_size: int) -> Tuple[str, str]: |
|
""" |
|
Extract a GLB file from the 3D model. |
|
|
|
Args: |
|
state (dict): The state of the generated 3D model. |
|
mesh_simplify (float): The mesh simplification factor. |
|
texture_size (int): The texture resolution. |
|
|
|
Returns: |
|
str: The path to the extracted GLB file. |
|
""" |
|
gs, mesh, trial_id = unpack_state(state) |
|
glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False) |
|
glb_path = f"{TMP_DIR}/{trial_id}.glb" |
|
glb.export(glb_path) |
|
return glb_path, glb_path |
|
|
|
|
|
def activate_button() -> gr.Button: |
|
return gr.Button(interactive=True) |
|
|
|
|
|
def deactivate_button() -> gr.Button: |
|
return gr.Button(interactive=False) |
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown(""" |
|
## Image to 3D Asset with [TRELLIS](https://trellis3d.github.io/) |
|
* Upload an image and click "Generate" to create a 3D asset. If the image has alpha channel, it be used as the mask. Otherwise, we use `rembg` to remove the background. |
|
* If you find the generated 3D asset satisfactory, click "Extract GLB" to extract the GLB file and download it. |
|
""") |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
image_prompt = gr.Image(label="Image Prompt", image_mode="RGBA", type="pil", height=300) |
|
|
|
with gr.Accordion(label="Generation Settings", open=False): |
|
seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1) |
|
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True) |
|
gr.Markdown("Stage 1: Sparse Structure Generation") |
|
with gr.Row(): |
|
ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1) |
|
ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1) |
|
gr.Markdown("Stage 2: Structured Latent Generation") |
|
with gr.Row(): |
|
slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1) |
|
slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1) |
|
|
|
generate_btn = gr.Button("Generate") |
|
|
|
with gr.Accordion(label="GLB Extraction Settings", open=False): |
|
mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01) |
|
texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512) |
|
|
|
extract_glb_btn = gr.Button("Extract GLB", interactive=False) |
|
|
|
with gr.Column(): |
|
video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300) |
|
model_output = LitModel3D(label="Extracted GLB", exposure=20.0, height=300) |
|
download_glb = gr.DownloadButton(label="Download GLB", interactive=False) |
|
|
|
trial_id = gr.Textbox(visible=False) |
|
output_buf = gr.State() |
|
|
|
|
|
with gr.Row(): |
|
examples = gr.Examples( |
|
examples=[ |
|
f'assets/example_image/{image}' |
|
for image in os.listdir("assets/example_image") |
|
], |
|
inputs=[image_prompt], |
|
fn=preprocess_image, |
|
outputs=[trial_id, image_prompt], |
|
run_on_click=True, |
|
examples_per_page=64, |
|
) |
|
|
|
|
|
image_prompt.upload( |
|
preprocess_image, |
|
inputs=[image_prompt], |
|
outputs=[trial_id, image_prompt], |
|
) |
|
image_prompt.clear( |
|
lambda: '', |
|
outputs=[trial_id], |
|
) |
|
|
|
generate_btn.click( |
|
image_to_3d, |
|
inputs=[trial_id, seed, randomize_seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps], |
|
outputs=[output_buf, video_output], |
|
).then( |
|
activate_button, |
|
outputs=[extract_glb_btn], |
|
) |
|
|
|
video_output.clear( |
|
deactivate_button, |
|
outputs=[extract_glb_btn], |
|
) |
|
|
|
extract_glb_btn.click( |
|
extract_glb, |
|
inputs=[output_buf, mesh_simplify, texture_size], |
|
outputs=[model_output, download_glb], |
|
).then( |
|
activate_button, |
|
outputs=[download_glb], |
|
) |
|
|
|
model_output.clear( |
|
deactivate_button, |
|
outputs=[download_glb], |
|
) |
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
pipeline = TrellisImageTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-image-large") |
|
if torch.cuda.is_available(): |
|
pipeline.cuda() |
|
print("CUDA is available. Using GPU.") |
|
else: |
|
print("CUDA not available. Falling back to CPU.") |
|
try: |
|
pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8))) |
|
except: |
|
pass |
|
print(f"CUDA Available: {torch.cuda.is_available()}") |
|
print(f"CUDA Version: {torch.version.cuda}") |
|
print(f"Number of GPUs: {torch.cuda.device_count()}") |
|
demo.launch(debug=True) |
|
|